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Abstract 

Smart growth policies have often emphasized the importance of land use mix as 

an intervention beholding of lasting urban planning and public health benefits. Past 

transportation-land use research has identified potential efficiency gains achieved by 

mixed-use neighborhoods and the subsequent shortening of trip lengths; whereas, 

public health research has accredited increased land use mixing as an effective policy for 

facilitating greater physical activity. However, despite the celebrated transportation, 

land use, and health benefits of improved land use mixing and the extent of topical 

attention, no consensus has been reached regarding the conceptualization and 

measurement of this key smart growth principle or the magnitude of its link to walking. 

This dissertation, comprised of three empirical studies, explores this topic in detail. 

In the first study, activity-based transportation and landscape ecology theory 

contributed to the introduction of a multifaceted land use mix construct reflected by a 

set of composition and configuration indicators. This activity-related land use mix 

construct, and not the commonly used entropy index, was a significant built 

environmental determinant of walk mode choice and home-based walk trip frequency. 

In the second study, structural equation modeling was used to establish a connection 

between residing in a smart growth neighborhood and home-based pedestrian travel. 

This study discovered a multidimensional depiction of the traveler’s residential 

environment that was reflective of local land use mix, employment concentration, and 

pedestrian-oriented design. The second-order factor, which described a smart growth 



ii 
 

neighborhood, had a strong and positive effect on the household-level decision to walk 

for transportation-related and discretionary travel when assessed in a multidirectional 

conceptual framework. 

In the final study, the influence of geographic scale selection on the connection 

between the built environment and active and auto-related travel was explored. 

Informed by this sensitivity analysis, which underlined the existence of scaling and 

zoning effects, mode choice for both work and nonwork travel as a function of 

individual, household, transportation, and built environment features at the home 

location and destination was modeled. These discrete choice analysis results found that 

measures of land use mix and density at each trip end had the strongest effect on the 

decision to walk rather drive or ride in a vehicle for nonwork trips. In all, the findings 

from this dissertation provide policymakers and practitioners greater specificity in the 

measurement of land use mix and its connection to pedestrian travel behavior. 
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Chapter 1: Introduction 

 

1.1 Context 

Urban policies encouraging active travel behavior and reducing auto dependence 

are often rooted in smart growth management strategies promoting improved 

efficiencies of the built environment. Plans informed by these policies have envisioned 

mixed-use neighborhoods with an assortment of residential options surrounded by 

diverse out-of-home activity locations. This land development strategy maximizes the 

ability of the built environment to offer residents quick and efficient travel connections. 

Consequently, an improvement in the local accessibility to employment, retail, and 

recreational opportunities for residents of these compact and mixed-use environments 

has been the subject of rewarding examination for urban planning researchers studying 

the travel behavior outcomes associated with smart growth policies. 

Study of the linkages between human travel behavior and the built environment 

have been of particular interest to transportation (Handy, et al., 2002) and land use 

planners, who have long supported myriad benefits associated with providing a mixture 

of land use types at the neighborhood scale (Reilly & Landis, 2003). To transportation 

planners, an effort to increase the mixing of land use types in an urban neighborhood 

holds promise as a lever that policymakers may pull to increase active travel mode 

shares and lower nonwork vehicle miles traveled (VMT) (Hong, et al., 2013). To land use 

planners, the provision of a mix of activity opportunities guides growth management 
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policies seeking to achieve compact urban development, revitalize aging neighborhoods, 

and reduce rural land consumption (Downs, 2005). 

In accordance, urban planning researchers have established a variety of land use 

mix indicators to investigate the effectiveness of mixed-use policies in achieving their 

anticipated transportation outcomes. Such metrics have been widely accepted within 

the formal processes of transportation-land use planning (Zhang & Kukadia, 2005). 

When employed by urban planners, these land use mix measures have sought to both 

examine the degree to which land use mixing can encourage active travel (Manaugh & 

Kreider, 2013) and identify the extent of urban sprawl (Zhang & Kukadia, 2005). Findings 

from this line of research have adopted land use mix metrics to support continued calls 

for decision makers to direct land development efforts that increase the diversity of 

land use types within new and existing neighborhoods (Rodriguez, et al., 2009). 

Land use mixing and travel behavior research, traditionally an urban planning 

interest, has more recently received greater topical attention from the public health 

field. To public health researchers and practitioners, the integration of different land 

uses in a neighborhood reflects an enhancement to the pedestrian orientation of the 

given neighborhood and an improved feasibility and attractiveness for active travel by 

reducing physical and psychological barriers (Handy, et al., 2002). The promotion of 

policies aimed at improving the viability and appeal of walking holds potential as a cost-

effective approach for increasing physical activity, limiting the adverse impacts of 

transportation-related pollution, and fostering the development of neighborhood sense 
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of place (Manaugh & Kreider, 2013). As such, a focus on the impact of environmental 

determinants (e.g., land use mixing) on physical activity in public health research has 

helped inform policy and programmatic recommendations related to the creation of 

active communities and mitigation of prevalent chronic disease risk factors (Duncan, et 

al., 2010). 

A major impetus behind the resulting policies is that the built environment—not 

only social factors—has an effect on whether or not individuals partake in higher levels 

of physical activity, which in turn has public health-related implications vis-à-vis obesity, 

blood pressure, and mental health (Forsyth, et al., 2008). Public concerns over rising 

obesity prevalence and the related adverse impacts of chronic diseases associated with 

low physical activity levels has directed public health research and initiatives to consider 

land use policies as population health promotion strategies (Brownson, et al., 2009). In 

response, recent research has helped to refine guidelines centered on the promotion of 

increased local land use mixing as an urban policy intervention beholding of long lasting 

public health benefits (Frank, et al., 2005). 

 

1.2 Motivation 

Urban planning and public health policies promoting the mix of heterogeneous 

land use types have been predicated on a chief suggestion in many transportation 

theories: individuals move between different land uses to conduct the activities offered 

at these locations and if those land uses are located close enough to make pedestrian 
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travel reasonable, then individuals will walk to perform their activities (Forsyth, et al., 

2008). Presented with this conceptualization, a neighborhood primarily characterized by 

residential land uses will regularly necessitate auto travel to reach employment, retail, 

and recreational opportunities; whereas, a neighborhood providing a mix of land use 

types will increase the practicality of active transportation for local residents (Manaugh 

& Kreider, 2013). Hence, the adoption of urban policies seeking to increase the mixing, 

intensity, and balance of residential locations in conjunction with the land use types that 

host the out-of-home opportunities sought after by residents should help produce those 

transportation and public health benefits related to reduced trip lengths and ensuing 

active travel viability (Kockelman, 1997). 

The transportation-related benefits of increasing the land use mix within a 

neighborhood are detailed throughout the urban planning literature. One predominant 

and overarching finding has been that individuals residing in an environment with a 

balanced mix of land use types have generally experienced a reduction in auto travel 

(Cervero, 1988; Song, et al., 2013a) when compared to residents of less mixed and 

compact areas (Fan & Khattak, 2008). Beyond simply reducing motorized travel, land 

use mixing has also been emphasized as an urban policy tool for inducing rideshare 

opportunities and enhancing the prospects of shared parking arrangements (Cervero, 

1988). Mixed-use neighborhoods have also been associated with lower auto ownership 

rates (Song & Rodriguez, 2005) since areas with better local land use mixing offer more 

opportunities within a walkable distance (Kuzmyak, et al., 2006). A reduction in trip 
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distances that results from increased land use mixing also carries the potential to better 

distribute travel demand across the day and week (Cervero, 1988). In all, increased 

neighborhood accessibility via better land use integration has been linked to declines in 

vehicle and personal miles traveled (Krizek, 2003a) in addition to auto trip generation 

(Buehler, 2011). Consequently, planning research has highlighted these benefits of 

increased land use mix in promoting viable nonautomotive transportation alternatives 

including transit use (Cervero & Kockelman ,1997; Cervero, 2002) and, more recently, 

active travel (Buehler, 2011; Song, et al., 2013a). 

Similarly, public health research investigating the link between chronic disease 

risk factors and the built environment has continued to exude the related benefits of 

increased land use mixing (Christian, et al., 2011). Heightened land use mixing has been 

associated with an increased propensity for individuals to walk and thus be more 

physically active (Song & Rodriguez, 2005). Mixing different land uses within a 

neighborhood provides a diverse set of destinations viewed as a vital component to 

supporting individual active travel and the maintaining of a healthy weight (Brown, et 

al., 2009). Aside from locating a variety of opportunities in close proximity, improved 

land use mixing has been associated with the development of a more visibly interesting 

built environment conducive to walking (Reilly & Landis, 2003; Forsyth, et al., 2008). 

Given these health-related benefits of increased physical activity, policies such as the 

Centers for Disease Control and Prevention’s Healthy Community Design Initiative have 

recommended mixed-use developments as an active living strategy for creating places 
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where individuals can live, work, and play within a single neighborhood (U.S. 

Department of Health and Human Services, 2011). A further bridging of the two fields 

has resulted from research lauding the benefit of increased land use mixing toward 

reducing the negative externalities associated with automobile use such as vehicle 

emissions production (Frank, et al., 2008; Song, et al., 2013a). Taken together, land use 

mix may be viewed beyond its sole value as a research instrument for examining its 

environmental influence on physical activity. Land use mixing may also function as a 

valid planning tool that both policymakers and practitioners may use to inform the 

development of neighborhoods favorable to active and healthy lifestyles (Duncan, et al., 

2010). 

Despite the identified transportation, land use, and health-related benefits 

associated with better land use mixing and the increased topical attention given by 

researchers, current practice has remained guided by limited theory and empirical 

evidence supporting land use mix as a transportation performance measure. Mixed-use 

zoning and the development of neighborhood centers has been directed under the 

pretext of transportation efficiencies gained by increased land use mixing; however, 

academic research has offered unsubstantiated support of this fundamental connection 

by establishing uninformed metrics resulting in poor constructs. To provide policy and 

practice with an improved understanding of the ways in which land use mix influences 

pedestrian travel behaviors and patterns, research must offer better guidance on the 
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conceptualization and measurement of land use mixing and the geographic scale at 

which to analyze any prospective relationship this construct may have with active travel. 

 

1.3 Objectives 

In response, this dissertation aims to introduce an improved theoretical and 

empirical measure of land use mix and systematically explore its connection to 

pedestrian travel within a comprehensive and behaviorally sensitive conceptual 

framework. To realize this goal and provide transportation planners and engineers with 

greater insight into the relative impact of land development patterns on pedestrian 

travel, these primary research questions were addressed: 

 

1. What is the relationship between pedestrian travel and land use mix when the 

complementarity, composition, and configuration of local land use types is 

considered? 

2. What is the impact of land use mix and other related smart growth features on 

pedestrian travel for transportation-related and discretionary trip purposes? 

3. How, if at all, does operationalizing land use mix and other built environment 

features at varying geographic scales influence their hypothesized connection to 

individual travel behavior? 
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By providing insight into these unresolved issues, among others, this dissertation 

intends to clarify land use mix as a multifaceted environmental construct with clear and 

beneficial pedestrian travel implications instead of allowing this important smart growth 

principle to remain “an elusive, intangible concept” (Manaugh & Kreider, 2013, p. 63). 

 

1.4 Overview 

This dissertation is divided into five remaining chapters. The next chapter 

reviews relevant urban planning and public health literature that has investigated the 

interactions between land use mixing and travel behavior. In this review, attention is 

directed to present strategies for reflecting land use mix in an attempt to identify three 

land use mix components (land use interaction, geographic scale, and temporal 

availability) comprising this built environment concept. Chapter 2 then sets forth an 

ambitious research agenda for establishing a spatial-temporal land use mix metric by (a) 

identifying the conceptual and methodological faults inherent to current land use 

interaction and geographic scale representations and (b) describing the strategies and 

practical benefits of representing the temporal availability in future mix measures. 

The next three chapters represent standalone studies, which subsequently 

address each research question. Chapter 3 presents a land use mix measure reflecting a 

conceptually valid set of environmental indicators that are well founded in activity-

based transportation planning and landscape ecology theory. This multifaceted 

construct, which was indicative of the paired landscape pattern aspects of composition 
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and configuration, was tested within a confirmatory factor analysis framework. The 

introduced activity-related land use mix construct, and not the frequently used land use 

entropy index, was a significant environmental determinant of walk mode choice and 

home-based walk trip frequency when operationalized at three fixed geographic scales 

spanning across the Oregon Willamette River Valley study area. 

In Chapter 4, additional environmental features describing the land development 

pattern, urban design, and transportation system near a traveler’s residence are 

investigated in order to understand the relative contribution of various smart growth 

factors on home-based pedestrian travel behavior. Using structural equation modeling, 

this study identified a multidimensional latent construct of the residential environment 

that was defined by three factors: land use mix, employment concentration, and 

pedestrian-oriented design. This second-order construct describing a smart growth 

neighborhood was found to have both a strong direct and total effect on the household-

level decision to walk for transportation-related and discretionary travel when assessed 

in a multidirectional conceptual framework. 

Chapter 5 explores the influence of geographic scale selection in operationalizing 

these built environment features at each trip end and their possible connection to 

individual-level travel behaviors. The modifiable areal unit problem, which details the 

scaling and zoning effects that arise from the use of subjective boundary definitions to 

report contextual influences, was tested by measuring the association between walking 

and dozens of built environment features operationalized at fixed and sliding geographic 
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scales. Informed by this sensitivity analysis, mode choice for work and nonwork travel as 

a function of individual, household, transportation, and built environment features near 

the residence and destination was modeled. Land development patterns, designated by 

land use mix and density measures, at each trip end had the strongest influence on the 

decision to walk rather drive or ride in a vehicle for nonwork trips. 

Conclusions from this dissertation work are provided in Chapter 6. This final 

section summarizes the primary findings from the studies described in Chapters 3-5, 

describes several implications for practice and policy, notes the main limitations of this 

work, and discusses promising areas for future research. 
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Chapter 2: Toward a Spatial-Temporal Measure of Land Use Mix 

 

2.1 Land Use Mix and Active Travel 

A general assumption emerging from the existing evidence base has been that a 

built environment characterized by a greater land use mix will be better for active travel 

(Boer, et al., 2007). Empirically, this hypothesis has been supported by meta-analyses, 

which have proclaimed nonmotorized mode choices and the likelihood to perform a 

walking trip as being most strongly associated with local land use patterns (Ewing & 

Cervero, 2001; Ewing & Cervero, 2010). In fact, past research has argued that the degree 

of land use mixing in a neighborhood may matter more than density when determining 

what built environment alteration has a stronger potential to significantly induce active 

transportation (Cervero & Duncan, 2003). Yet, despite such assertions, the 

transportation-land use planning profession still must enhance present metrics to more 

accurately and efficiently measure the impact of increased local land use mix for explicit 

travel outcomes, trip purposes, and activity settings (Manaugh & Kreider, 2013). 

To support active travel behavior, a number of ongoing policy efforts have 

professed an uptick in mixed-use developments as a winning strategy for supporting this 

travel outcome for both utilitarian and recreational travel (Voorhees, et al., 2010). 

However, when past studies have examined these distinctive trip purposes on the 

aggregate, inconsistent findings regarding the significance of local land use mix on 

walking have been reported. Examining walking behavior in the 10 largest US 
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metropolitan regions, Boer et al. (2007) revealed that an increased intensity of 

heterogeneous land use types around an individual’s residence increased the likelihood 

of performing a walk trip. Similarly, Lee and Moudon (2006a) found an intensification of 

retail and education services located in proximity to an individual’s residence increased 

his/her likelihood to walk for transport. Frank et al. (2005) found improved balance in 

residential, office, retail, and entertainment land uses had a significant association with 

an individual’s prospect to undertake moderate-to-intense physical activity for 30 

minutes per day. 

In contrast, Cerin et al. (2007) found an improved balance in residential, 

commercial, industrial, recreational, and other land use types had no significant link to 

increased minutes spent walking per day. Studying the same active travel outcome, 

Forsyth et al. (2008) echoed this finding by noting that an increased proportion of 11 

various social land use types had no significant connection to walking when aggregating 

trip purpose. Clark and Scott (2014) largely found a non-significant relationship between 

the decision to walk or bicycle for travel and a more equitable balance of residential, 

commercial, office, institutional, recreational, and industrial land uses when mix was 

measured at varying geographic scales. Investigating walk trips per day, Targa and 

Clifton (2005) revealed an increased proportion of commercial or park space within a US 

Census block had no significant influence on active travel. 

 

 



13 
 

2.1.1 Land use mix and active travel by trip purpose 

While contrary findings have arisen from an examination of land use mix and 

increased active travel without any distinction of trip purpose, the pattern of results has 

been more pronounced when assessing this hypothesized link for utilitarian travel. As 

the thinking goes, an individual will be more likely to walk for transport in a 

neighborhood characterized by a variety of facilities and services located within a short 

travel distance of one another (Turrell, et al., 2013). The theoretical connection between 

increased land use mix and active travel has been generally confirmed by past studies 

focused on utilitarian travel, but not walking or bicycling for recreation or leisure 

purposes (McCormack, et al., 2008). In a review of built environment correlates to 

walking, Saelens and Handy (2008) noted urban planning and public health studies have 

found consistent and positive associations between increased local land use mix and 

walking for transportation purposes, whether the activity was mandatory or not. 

Conceptually, a neighborhood with strong accessibility to, intensity of, and 

diversity in compatible land uses should be accompanied by a higher frequency of 

nonwork walk trips exhibited by its residents. Past research has anticipated an increased 

likelihood of selecting an active mode for discretionary travel when bolstering the mix of 

land use types in a neighborhood since shopping and other nonwork trips tend to be 

more elastic than commute trips (Cervero & Radisch, 1996; Targa & Clifton, 2005). 

Relatedly, urban policies centered on improved co-location of residential and 

commercial land uses have proven beneficial as a strategy for reducing nonwork VMT 
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rates and overall demand for new automobile capacity (Kuzmyak, et al., 2006). Other 

studies have suggested flexible zoning ordinances as an urban planning tool with the 

prospective to ease auto dependence after finding a significant relationship between 

increased land use mixing and active travel mode choice (Rajamani, et al., 2003). 

Research into the link between increased land use mix and active travel for 

discretionary activities has supported these calls to create activity-friendly 

neighborhoods. Using national household survey data, Buehler (2011) found a more 

balanced mix of residences and employment locations to be associated with an 

increased likelihood of walking for a shopping trip. Cervero and Duncan (2003) similarly 

modeled an increased probability for an individual to walk for nonwork travel if residing 

in a US Census tract marked by a strong mixture of residential and commercial or retail 

land uses. In another Northern California study, Handy et al. (2006) discovered 

individuals walked more for shopping trips when the intensity of unique establishment 

types within one-half mile of his/her residence increased. In terms of active travel mode 

choice, Rajamani et al. (2003) noted a more balanced mix of residential, commercial, 

industrial, and open space land uses increased the likelihood of a Portland-area resident 

to perform a nonwork trip by walking instead of driving. 

A positive and significant relationship has also commonly arose in studies linking 

land use mix to increased active travel for mandatory activities, which tend to be more 

spatially and temporally fixed. In their seminal study, Frank and Pivo (1994) introduced 

an entropy-based metric measuring the association between an increased balance in 
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residential, retail, office, entertainment, institutional, and industrial land use types and 

commute mode choice. Findings from this study revealed that land use mix, when 

measured independently at the residence and employment site, was positively and 

significantly correlated with the decision to walk as opposed to drive-alone for work-

related travel. In support of this finding, a more recent Seattle-based study by Frank et 

al. (2008) discovered an increase of land use mix in a similarly constructed metric 

significantly improved an individual’s likelihood to walk rather than drive-alone for 

home-based work travel. Zhang and Kukadia (2005) specified a similar mode choice 

model and found an improved balance of varying land uses types located between one-

half and two miles of a residence to be associated with an increased likelihood for an 

individual to walk rather than drive-alone for home-based commute trips. Extending this 

active travel outcome to also include bicycling, Manaugh and Kreider (2013) revealed a 

heightened balance of residential, commercial, and recreational land use types was 

significantly related to an increased percentage of individuals commuting via active 

travel. Although the general trend has pointed to increased neighborhood land use 

mixing as a significant environmental determinant associated with the encouragement 

of active commuting, past research has also modeled an inconclusive association for 

work trips (e.g., Srinivasan, 2002; Ewing, et al., 2003). 

In all, existing evidence has substantiated that neighborhoods characterized by a 

higher diversity in land use types are associated with increased rates of walking and 

bicycling for utilitarian travel among adults (Larsen, et al., 2009); yet, this connection 
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has been less recognized when assessing the association of land use mixing on children’s 

active travel (Kerr, et al., 2006). Akin to commute trips among adults, a neighborhood 

characterized by a strong blend of diverse land uses may be surmised to be an 

environment conducive to auto independence and thus a neighborhood where children 

in zero-vehicle households may actively travel to school (Ewing, et al., 2004). However, a 

built environment exhibiting a high level of land use mixing may also be perceived as 

being more disorganized, and an environment in which parents feel uncomfortable 

having their children walk or bicycle within. Accordingly, an increase in neighborhood 

land use mixing could also signify an impediment to active travel for school trips (Su, et 

al., 2013). 

Provided these potentially competing effects of increased land use mixing on 

children’s active travel, inconclusive evidence may be found throughout the literature 

studying school-related trips. Larsen et al. (2009) found an improved balance of 

residential, institutional, commercial, recreational, industrial, and agricultural land uses 

within one mile of a school was significantly related to an increased likelihood for a child 

to walk, bicycle, or skateboard to school. Panter et al. (2010) discovered an increased 

balance of 17 land use types surrounding a child’s residence and along his/her route to 

both be significantly related to an increased likelihood to bicycle, but not walk, for 

school-related travel. While these studies support the hypothesis that increased land 

use mix promotes active travel among children, other studies have pointed to the 

contrary. Ewing et al. (2004) estimated a nested multinomial logit model of school trips 
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among Gainesville, Florida students and found an increased mixing of commercial, 

industrial, and service land uses within a traffic analysis zone had no significant 

relationship with the decision to walk or bicycle versus drive. Modeling a binary 

outcome, Kerr et al. (2006) discovered an improved balance of residential, institutional, 

office, retail, and entertainment land uses was not related to whether or not a child 

walked or bicycled to school. Voorhees et al. (2010) similarly found an increased 

diversity of land uses around a child’s home to have a non-significant effect on his/her 

revealed behavior to walk to or from school. 

 

2.1.2 Land use mix at the trip end and active travel 

Beyond the study of how the transportation-land use connection varies in 

relation to trip purpose, research must also better understand the sensitivity of 

measuring the built environment at either trip end (Handy & Niemeir, 1997). A debate 

pertaining to whether or not the effect of land use mix on active travel behavior is best 

measured at the trip’s origin or destination will carry on until research has adequately 

and independently investigated the effect of land use mixing at each trip end. Statistical 

evidence has revealed substantial variation in the effect size and significance of land use 

mix on travel depending on whether the accessibility to, intensity of, or pattern among 

heterogeneous land uses was measured at the trip origin or destination (Zhang, 2004).  

Much of the variation in results has been attributed to the fact that previous 

studies have largely only measured land use mix at a single trip end. Yet, of those 
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studies that have accounted for mix at each trip end, the findings have varied. In an 

early comparison of travel behavior within pedestrian- and auto-oriented 

neighborhoods, Cervero and Radisch (1996) concluded the home-end of a nonwork trip 

within a pedestrian-oriented neighborhood was a stronger predictor of nonmotorized 

travel mode shares than the environment surrounding the trip destination. Measuring 

land use mix at both the origin and destination, Cervero and Duncan (2003) found 

greater land use mixing to only significantly increase the likelihood of an individual to 

walk rather than drive for his/her commute when the factor was operationalized at the 

trip origin. Similarly, Panter et al. (2010) found a greater land use balance was only 

significantly related to increased school travel when measured around a child’s 

residence, not his/her school location. This latter finding also highlighted the 

aforementioned importance of measuring land use mix based on trip purpose since a 

school- or work-related activity perceivably has less flexibility.  

However, Frank et al. (2008), who measured land use mix at each trip end for 

commute tours, found an increase in the balance of diverse land use types measured at 

both trip ends was a significant predictor of the likelihood to walk rather than drive-

alone for home-based work, home-based nonwork, and work-based other trips. While 

past studies have typically stressed the importance of measuring land use mix at the trip 

origin, others have proclaimed that land use pattern surrounding the trip destination 

matters more for active travel modes (Zhang, 2004). Given this assertion and the 

inadequacy in previous active transportation studies to provide comparable 
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measurements of mix at each trip end, future active travel behavior research must 

aspire to provide an undivided attention to the neighborhood effect of land use mix 

found at each trip end. 

 

2.1.3 Land use mix components 

Despite the attention given by researchers to studying the interactions between 

land use mix and active travel, no consensus has been reached regarding the magnitude 

or significance of this hypothesized connection. Moreover, the absence of a 

comprehensive assessment accounting for different trip purposes and trip end effects 

has likely resulted in an incomplete portrayal of the relationship between land use mix 

and active travel behavior. As with other unsettled transportation planning debates, 

investigations into this connection have been obscured by data limitations and 

methodological distinctions (Badoe & Miller, 2000). The questionable basis for 

conceptualizing and measuring land use mix has also hindered advancements into the 

study of this interdisciplinary topic. In response, future research should provide a 

greater theoretic and methodologic focus on the three following interrelated 

components of land use mix: 

 

• Land Use Interaction: the quantification of complementary land use types. 

• Geographic Scale: the zonal class and spatial extent chosen to operationalize 

land use mix. 



20 
 

• Temporal Availability: the opportunity to access land use types at a specific time. 

 

Recognizing the need for additional research into each component, the following 

sections of this literature review will describe how past transportation research has 

quantified land use mix and spatially bounded the concept to establish a spatial 

measure. Within the overview of these first two components, a discussion of the 

conceptual and methodological concerns inherent to past efforts will be presented. The 

previously unexplored component of temporal availability is then introduced—through 

the lens of recent accessibility studies—as a time-based advancement to understanding 

how increased land use mix influences active travel behaviors. This literature review 

concludes with a synthesis of the complexity in the described strategies for representing 

each of these three components of land use mix. 

 

2.2 Land Use Interaction 

At the center of any built environment depiction is the choice of measurement, 

where the selected measure must reflect a clear construct of the built environment 

feature being conveyed and quantified. In defining this first component, Handy et al. 

(2002) described land use mix as the relative proximity of different land uses within a 

given area. Ewing and Cervero (2010) defined diversity of the built environment, or land 

use mix, as being the number of unique land use types in an area and the relative size of 

each land use type. This depiction has differed from the definition provided by Saelens 
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et al. (2003), who offered a more nuanced description of land use mix that defined the 

measure as the level of integration among different land use types within an area. While 

seemingly trivial differences, the first depiction defines a distance-based accessibility 

measure of land use mix; whereas, the second definition suggests a measure of intensity 

or pattern in heterogeneity land use types. Conversely, the last account more accurately 

reflects the construct by suggesting that a land use mix metric should quantify the 

functional complementarity of diverse land use types.  

The spatial integration of synergistic land uses is likely to produce the travel 

outcomes desired by smart growth policy advocates favoring mixed-use developments 

as a strategy for improving the viability of active transportation options (Handy, 2005). 

Yet, discrepancies in defining land use mix as a construct have produced a set of 

complications regarding how past research has viewed its relationship with active travel. 

Foremost, variety in land use mix definitions has led to a construct without a 

standardized depiction (Handy, et al., 2002). Prior studies have quantified land use mix 

as an accessibility, intensity, or pattern measure (Song & Rodriguez, 2005). An 

unstandardized depiction has caused an imprecise comprehension of which land use 

mix measures yield the strongest associations with the active travel outcomes revealed 

by individuals (Brownson, et al., 2009). Furthermore, internal measurement 

inconsistencies have led to unreliable reports of the land use mix and active travel 

connection, and reduction in the transferability of the empirical findings required as the 

basis for urban policymaking (Zhang & Kukadia, 2005). 
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Complications brought about by subtleties in defining land use mix as a construct 

and measuring its effect on active travel behavior have contributed to contradictive 

findings within the literature. These intricacies in specifying a standardized land use mix 

metric represent a chief and complex topic within the literature that, although 

previously studied, warrants greater scholarly attention (Manaugh & Kreider, 2013). In 

the end, the linkages between increased land use mix and active travel behavior must 

be informed by the depiction of a land use mix measure fitting of the policy questions 

being asked. 

 

2.2.1 Measuring land use interaction 

In reviewing studies on the association between the built environment and 

active transportation, Brownson et al. (2009) adopted a classification scheme proposed 

by Song and Rodriguez (2005) that segmented land use mix measures into three 

categories: accessibility, intensity, and pattern. Although the described typology has 

likely embodied an imperfect sorting of all mix measures, the distinction of three 

measurement types will provide a structure for unraveling the complicated nature of 

quantifying land use mix. A related acknowledgement of an unsettled boundary for 

classifying various built environment measures has been noted in similar reviews (Ewing 

& Cervero, 2010). 
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2.2.1.1 Accessibility measures 

While often not explicitly regarded by transportation researchers as a land use 

mix measure, the concept of accessibility has often been quantified as a distance-based 

measure capturing the spatial proximity of separate activity locations. Distance-based 

accessibility measures have arisen from defining accessibility as the ease of reaching an 

urban opportunity from a given activity location or by individuals at that particular 

location (Kwan & Weber, 2008) through the use of one or more modes of transportation 

(Chen, et al., 2011). Thus, the physical separation of any two activity locations has been 

treated as an accessibility measure in which far apart (distance, time, or cost) locations 

are mutually less accessible than those close to one another (Pirie, 1979). In this 

context, an activity found at the urban opportunity of interest has a direct link to the 

land use type found at each location (Yoon & Goulias, 2010). At the foundation of this 

interpretation has been the influential definition put forward by Hansen (1959) in which 

the notion of intensity was detached from prior accessibility measures in favor of a 

stricter version only pertaining to the potential of opportunity interaction. Convention 

to parse intensity from accessibility supports the identification of accessibility and 

intensity as unique strategies for measuring land use mix. 

Kitamura et al. (2001) noted land use as an important determinant of 

accessibility. This assertion supported a division of accessibility measures by Geurs and 

van Wee (2004), who stated a comprehensive accessibility measure must possess the 

four interrelated components of land use, transport, time, and the individual. The 
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distribution of various activities (land uses) has the potential to inform travel demand 

and introduce temporal constraints affecting the availability of urban opportunities to 

an individual. Advancing this logic, increased land use mixing within an area will increase 

the potential to shorten trip lengths and improve the feasibility of individuals to conduct 

their desired activities either by walking or bicycling.  

Connections such as the above description have made accessibility measures 

conceptually easy to understand and increased their attractiveness to studies focused 

on individual travel outcomes (Song & Rodriguez, 2005). Cervero (1996), adopting a 

distance-based accessibility measure, found the presence of a commercial or other non-

residential building within 300 feet of an individual’s residence increased his/her 

probability of commuting via walking or bicycling. For all utilitarian travel, McConnville 

et al. (2010) found increased distance to a grocery store and other disaggregate activity 

locations such as restaurants and recreational facilities was negatively associated with 

walking. In contrast, Kitamura et al. (1997) found land use mix to be a non-significant 

predictor of nonmotorized trip count; however, the authors express concern with 

quantifying land use mix as a measure of distance to the nearest grocery store, gas 

station, or park. 

 

2.2.1.2 Intensity measures 

A second category of land use mix measures found in the literature has 

quantified the intensity of a land use type in an area; described as a count or percent. A 
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count-based land use mix measure may be quantified by simply tallying the number of 

opportunities related to a land use type within in an area (Brownson, et al., 2009). 

Conceptually, an increase in the count of the nearby destinations an individual needs to 

attend in order to meet their daily needs should be associated with a higher level of 

utilitarian travel (McConnville, et al., 2010). Remaining intensity measures have been 

quantified as the percent of land within a defined area dedicated to a particular land use 

type (Song, et al., 2013a). As with count-based land use mix measures, these percent-

based spatial measures may easily be computed to offer practical information related to 

the intensity of a land use in an area. If a land use type under examination is relatively 

scarce, a percent-based measure alone can yield meaningful results (Song, et al., 2013a). 

In contrast, the choice of a count-based metric for linking a recreational land use (e.g., 

park) to an active travel outcome likely underestimates the relative importance of that 

land use in an area, which may be more suitably quantified as a percent-based measure 

accounting for the expanse of a recreational land use. Consequently, the land use type 

under investigation should inform the researcher of the appropriate intensity measure 

to select (Song & Rodriguez, 2005). 

In an analysis of utilitarian walking, McCormack et al. (2008) found an increase in 

the number of utilitarian destinations within one-quarter mile of an individual’s 

residence to be significantly associated with an increased level of physical activity. 

Similarly, Lee and Moudon (2006a) modeled a higher count of retail or service activity 

locations within one kilometer to be associated with an increased propensity to walk. 
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Yet, other studies employing a count-based measure have failed to discover such clear 

connections. Looking at discretionary travel, Handy et al. (2006) found a higher number 

of unique business types within 800 meters of a residence was significantly related to 

walking to a store at least once per month, but no significant relationship when unique 

business intensity was measured within 400 meters of a residence. An inconsistent 

finding was also reported by Boer et al. (2007), who found having four unique business 

types within one-quarter mile of a residence was significantly related to an increased 

propensity to perform a walk trip, but that any more business types was a non-

significant predictor of active travel. 

Additional active travel behavior studies have used a percent-based land use mix 

measure only to also find inconclusive evidence. Forsyth et al. (2008) studied utilitarian 

walking and discovered a greater percent of social land use types was significantly 

related to increased minutes of walking per day. Rodriguez et al. (2009) noted a higher 

percent of retail land use types within a 200 meter areal buffer was significantly 

associated with walking more minutes per week to a retail location. Targa and Clifton 

(2005), in contrast, revealed an increase in the percent of commercial or park land uses 

within a US Census block had no significant influence on the number of walking trips per 

day. 
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2.2.1.3 Pattern measures 

Pattern measures quantifying the spatial composition and configuration of land 

use types within an area represent the final category of land use mix measures. In 

ecological research, spatial composition has been defined as the variety and abundance 

of land uses in an area without any consideration of their spatial character (Van Eck & 

Koomen, 2008). When adopted in urban planning research, composition has been 

defined as the number of different land use types in a given area and degree to which 

they are represented in land area, floor area, or employment (Ewing & Cervero, 2010). 

As for spatial configuration, Gustafson (1998) defined the paired ecological concept as 

the quantification of the spatial characteristics of individual patches and the spatial 

relationship among multiple patches. Simply put, spatial composition describes what the 

land use types are and how many are present; whereas, spatial configuration measures 

how those land use types are spatially organized (Turner, 2005). An application of the 

spatial configuration measures developed by landscape ecologists has practical benefits 

toward better understanding both the functional complementarity and spatial 

distribution of heterogeneous land use types in an area (Hess, et al., 2001). However, 

past built environment research has been inhibited by disciplinary boundaries (Clifton, 

et al., 2008), which have hindered an improved understanding in the urban planning and 

public health fields of how spatial configuration measures adopted from landscape 

ecology may help explain active travel behavior. 
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 In turn, spatial composition measures have been commonplace in active travel 

research, but with contrasting findings. Duncan et al. (2010) found a more balanced 

composition of residential, commercial, and industrial or institutional land use types 

measured at a census collection district was associated with increased time spent and 

trips taken for utilitarian walking. In an analysis of four land uses located within a 

kilometer of a residence, Frank et al. (2008) revealed a more balanced composition of 

residential, office, retail, and entertainment land use types was associated with 

increased walking for transport. In contrast, Rajamani et al. (2003) found an increased 

mix of residential, commercial, industrial, and open space land use types within a block 

group was not related to walking for transport. Measuring the spatial composition of 

five land use types within a one mile areal buffer, Christian et al. (2011) revealed an 

improved balance of residential, retail, office, community, and recreational land use 

types was associated with increased utilitarian walking. Meanwhile, in another study of 

five land use types, Cerin et al. (2007) discovered an improved balance of residential, 

commercial, industrial, recreational, and other land use types had no significant 

influence on an individual’s active travel behavior. 

 

2.2.2 Concerns in measuring land use interaction 

While mixed-use development may be viewed as a desirable objective for active 

travel promotion, the successful implementation of a policy must be mindful of the 

assumptions and limitations inherent to the strategies for measuring land use 
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interaction (Table 1). Inconsistencies in the reported association between accessibility, 

intensity, and pattern measures of land use mix and active travel behavior can often be 

attributed to the conceptual and methodological limitations within past studies. These 

concerns with conventional land use mix measures have arisen from the fact that they 

are often imperfect conceptual and methodological realizations of the construct, which 

have been adopted from different contexts and disciplines (Clifton, et al., 2008). 

 

Table 1: Classification and Definition of Strategies for Measuring Land Use Interaction 

Classification of 
Land Use Mix 

Measurement 
Strategy Definition 

Accessibility Distance-based 
Ease of reaching an urban opportunity from a given 
activity location or by individuals at that particular 
location 

Intensity 
Count-based 

Number of locations related to a land use type in an 
area 

Percent-based 
Percent of area related to a specific land use type in an 
area 

Pattern 
Composition Spatial allocation of land use types in an area 

Configuration Spatial organization of land use types in an area 

 

 

2.2.2.1 Conceptual concerns 

Foremost, no conceptual agreement has been achieved on the number or 

combinations of land use types to be included in a land use mix measure.  Attention to 

the land use types being interacted must be a central consideration since the selected 

land use types are proxies for trip origins and destinations (Hess, et al., 2001). However, 

a wide variation in the pattern measures used to study travel behavior has underlined a 

lack of critical attention by researchers to the functional complementarity of certain 
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land use types when constructing a mix measure (Krizek, 2003b). Future research must 

better advise policy as to how a variation in the composition of selected land uses 

impacts metric construction and subsequently influences the described association 

between a neighborhood’s land use mix and the increased active travel behavior of its 

residents (Christian, et al., 2011). 

A second conceptual limitation of past studies has centered on the inadequate 

attention given to how the composition of land uses in a selected mix metric pair with 

the trip purpose being analyzed. At the heart of this critique is the aforementioned 

trend that increased local accessibility may not have a significant effect on all trip 

purposes (Krizek, 2003c). Although increased land use mix has an apparently strong 

association to discretionary travel, empirical evidence supporting the same conviction 

for work- or school-related active travel has been unclear. Therefore, future research 

must assess how a land use mix parameter’s specification varies by trip purpose (Crane, 

1996) and apply these results to determine the most appropriate land use types for 

analyzing the impact of mix on a particular trip purpose. 

Another conceptual limitation related to the choice of land uses has been the 

central assumption of most composition metrics that an equal distribution of land use 

types represents an ideal mixing level. Yet, the literature has lacked any theoretical 

underpinning to support a balanced land use allocation as a superior composition when 

connecting this built environment effect to active travel behavior (Manaugh & Kreider, 

2013). Case in point, while a neighborhood with an equal distribution of residential, 
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office, and retail land uses will likely generate active travel opportunities, the 

substitution of an industrial use for the residential land use type will almost certainly 

produce a completely different set of active travel outcomes despite generating an 

identical composition measurement. An unintended consequence of the common use of 

an atheoretical land use mix measure has been the adoption of an untested proxy for 

land use mix that measures land use heterogeneity rather than land use interaction 

(Hess, et al., 2001). 

 

2.2.2.2 Methodological concerns 

In addition to the listed conceptual concerns, methodological issues related to 

the creation of a measure, data used to produce the measure, and analytical approach 

applying the measure have troubled present land use mix measures. For pattern-related 

measures, active travel behavior studies have typically examined land use composition, 

but have rarely considered the corresponding concept of configuration when measuring 

land use mixing. Measurement strategies developed by landscape ecologists may be 

easily adapted to analyze mix and active travel behavior (Hess, et al., 2001); however, 

past mix measures have almost exclusively examined only spatial composition. These 

composition measures are not sensitive to the spatial pattern or arrangement of land 

use types in or surrounding a geographic area (Kockelman, 1997; Song, et al., 2013a). 

The failure of conventional land use mix measures to quantify aspects of land use 

configuration such shape and patch size has led to an incomplete understanding of how 
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the construct may influence the decision to use active travel (Su, et al., 2013). A 

formation of future land use mix indicators for spatial composition and configuration 

will enable researchers to quantify the extent to which land use patterns differ between 

neighborhoods and better assess what land use patterns best accomplish the 

transportation, land use, and public health objectives of active travel policies (Van Eck & 

Koomen, 2008). 

The inconsistencies and irregularities found across datasets have further 

confounded the creation of a robust land use mix measure. Poor quality and the 

unreliable nature of built environment data has been well established as a weakness 

constraining past travel behavior studies (Krizek, 2003b; Zhang, 2004). Discrepancies in 

the way parcel-level land use data have been aggregated to general typologies has also 

constrained the strategies in which researchers may specify land use mix measures. 

Additionally, past research has been mired by an unavailability of built environment 

data that spatially and temporally matches the travel data being analyzed (Handy, et al., 

2002). Even in instances of data compatibility, past studies have chosen to create 

unconventional or sophisticated land use mix measures without any strict protocol to 

permit replication in other contexts (Lee & Moudon, 2006b). 

As for the analysis of land use mix in active travel studies, past research has 

largely examined its influence at the trip-level instead of the complete tour. By analyzing 

active travel by trip segments instead of the more complicated nature of a tour, 

researchers have likely been inaccurately representing the real forces generating the act 
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of travel and impact of the local built environment (Krizek, 2003a). Analysis of the link 

between land use mix and active travel for a commute trip on a tour with a complex 

structure will not allow a full understanding of the implications of nonwork 

establishments on the varying trips along the tour (Hanson, 1980). A second and 

arguably larger methodological issue with analyzing the impact of land use mix on active 

travel has been related to the inherent dependence of a measure on the selection of a 

geographic scale. The following section will discuss the second land use mix component 

of geographic scale and how the choice of a scale to operationalize any land use mix 

measure has greatly informed how research has pronounced any synergy between land 

use mix and active travel behavior. 

 

2.3 Geographic Scale 

Explicit consideration must be given to the concept of scale, because of its 

pervasiveness in all measures of space and time (Hess, et al., 2001). Unfortunately, past 

transportation research quantifying the neighborhood effect of land use mix has 

provided insufficient attention to the intrinsic bond between land use mixing and 

geographic scale selection when measuring the construct. A consequence of this 

inadequate attention in the literature has been an investigation into the neighborhood 

effect of mix on active travel utilizing a wide variety of geographic scales (Mitra & 

Buliung, 2012). Although the choice of scale to operationalize a mix measure has often 

approximated a pedestrian environment, few empirical studies have tested the effect of 
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scale variation (Boarnet, 2011). Without insight, the choice of geographic scale will 

remain one of the most perplexing complications confounding an accurate assessment 

of the association between active travel and accessibility, intensity, and pattern 

measures of land use mix (Kwan & Weber, 2008).  

In the end, research has implicitly shown that choice of geographic scale 

matters, but insufficient attention to the effect of scale variation has limited an 

identification of what built environment features have the greatest influence on travel 

behavior (Crane, 2000). Brownson et al. (2009) noted a large degree of variability in the 

operationalization of land use mix measures has made the comparison of results across 

different studies more difficult. Boarnet and Sarmiento (1998) previously noted that 

inconsistencies in the literature regarding modeled travel behavior and land use 

relationships were partly based on an absence of consideration for scale variation. 

Furthermore, the lack of scale variation within a study has led to the questioning of past 

empirical findings and a call for future research to focus on different geographic scales 

of analysis (Frank & Pivo, 1994). In fact, Kwan and Weber (2008) have suggested that 

without satisfactory attention to scale variation, a significant association between the 

built environment and travel behavior may simply be the result of the chosen scale and 

the connection between land use and sociodemographic measures at that chosen 

geographic scale. 

Given these concerns and others related to insufficient scale attention, there is 

some surprise that few studies have empirically tested the importance of geographic 
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scale in studying the link between the built environment and travel behavior (Zhang & 

Kukadia, 2005; Mitra & Buliung, 2012; Clark & Scott, 2014). In terms of active travel 

research, the suitable geographic scale for measuring land use mix has remained 

uncertain and may only be determined with the empirical testing of different strategies 

and spatial extents within the same study to better understand any variations in 

significance or explanatory power (Papas, et al., 2007). Establishment of a standardized 

strategy for comparing statistical variations attributed to geographic scale choice will 

ultimately improve study comparability and advise policymakers as to the scale of 

greatest relevance to increased active travel when advising the creation of pedestrian-

friendly, mixed-use neighborhoods (Learnihan, et al., 2011). 

 

2.3.1 Operationalizing land use interaction 

Operationalization of a land use mix measure at a selected geographic scale has 

generally been determined by analytical convenience or restrictions in data availability, 

which have prohibited a richer understanding of the scale at which land use mixing most 

affects active travel. In the urban planning and public health literature, various 

strategies have been used to delineate a physical landscape and characterize the built 

environment elements found within its boundary. These strategies for geographic scale 

definition may be classified as the adoption of a fixed, sliding, or perceptive scale. 
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2.3.1.1 Fixed geographic scale 

The selection of a geographic scale based on a predefined set of non-overlapping 

boundaries represents the application of a fixed geographic scale to operationalize land 

use mix. Fixed geographic scales reflect the measurement of land use mix within a 

discrete boundary that may be nested into a hierarchical spatial representation (Guo & 

Bhat, 2007). This attractive characteristic of fixed zonal schemes may permit a more 

comprehensive analysis of how the influence of mix on active travel differs across a set 

of nested spatial extents (Kwan & Weber, 2008). 

A common adoption of a fixed geographic scale has been the depiction of the 

built environment within an administrative boundary. Measuring land use mix at a fixed 

geographic scale delineated by a community- or government-based entity to achieve 

specific organizational objectives has exemplified the use of an administrative boundary. 

While no theoretical support has linked the adoption of this scale for active travel 

research, decisions to use an administrative scale has often been supported by an 

anticipated availability of sociodemographic, housing, and other land use characteristics 

also found at this scale (Kwan & Weber, 2008) since these territories are usually 

characterized by an explicit set of rules dictating their geographic delineation (Gauvin, et 

al., 2007). 

Use of a statistical boundary to operationalize land use mix has been a second 

fixed geographic scale ubiquitous in active travel research. A statistical boundary like a 

census geography is usually smaller in area than an administrative boundary, which has 
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bolstered their adoption to active travel study. In fact, statistical boundaries have been 

described in the literature as neighborhood approximations, thus viewing their adoption 

apt for capturing the local variation of land use mix within a larger administrative 

boundary (Manaugh & Kreider, 2013). Also, akin to the measurement of mix at an 

administrative boundary, the use of a statistical fixed scale intended to delineate 

territories for the collection of census-related data has the added benefit of offering a 

wealth of data pertaining to the population residing within the bounded area (Gauvin, 

et al., 2007). 

The creation of an artificial boundary has represented a final category of fixed 

geographic scale choice. The portrayal of a fixed scale geography through the 

generation of a uniformed, synthetic zoning system to assess the neighborhood effect of 

mix has represented the adoption of this category of fixed geographic scales. These 

zonal schemes may be created at a scale smaller than a statistical boundary to enable a 

more localized analysis of neighborhood effects on active travel behavior (Krizek, 

2003b). Past studies employing an artificial boundary to measure the built environments 

association with active travel have casted a net of grid cells over the study area in 

question. With this strategy, a grid cell with a size of one quarter or one mile has 

exemplified a rough approximation for the area of a census block or tract, respectively 

(Zhang & Kukadia, 2005). 
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2.3.1.2 Sliding geographic scale 

In contrast, the choice of a sliding geographic scale has embodied an attempt to 

more accurately explain those built environment features that matter most to travel 

behavior by placing an individual at the center of his/her surrounding built environment 

(Guo & Bhat, 2007). Beyond the individual-centric depiction of scale that allows for 

overlying geographic boundaries, a sliding geographic scale delineation has also offered 

a conceptual advancement to its fixed scale counterpart by attempting to allow for 

individual variation in neighborhood definition. Methodologically, by measuring land 

use mix at a sliding geographic scale, past studies have removed some statistical bias 

introduced by analyzing the effect of the built environment for an individual located at 

the perimeter, rather than center, of a fixed geographic scale (Oliver, et al., 2007).  

Arguably, the most common sliding geographic scale found in the active travel 

literature has been the use of a straight-line areal buffer to enclose a land use mix 

measure. The adoption of an areal buffer has been described as a more representative 

scale than most fixed geographies for assessing those built environment features that 

most influence pedestrian travel (Oliver, et al., 2007). However, the choice of a straight-

line distance to extend from a particular activity location to create the outer boundary 

of an areal buffer has differed from study to study. Yet, the decision to measure mix at a 

one-mile areal buffer has become commonplace because of the view that one mile 

approximates a 15-minute walk (Christian, et al., 2011). Other applications of a sliding 

geographic scale have varied based on a decision of whether or not to further constrain 
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the use of a straight-line walking distance or account for additional activity locations 

when operationalizing a land use mix measure. 

A choice to measure the built environment with a network buffer has arisen 

from the judgment of a researcher to further constrain the straight-line pedestrian 

environment. In active travel research, a network buffer has marked a conceptual and 

methodological improvement to the areal buffer strategy that naïvely implies the built 

environment surrounding a central location to be equally accessible by active travel in 

all directions without confinement to any natural or artificial barrier (Guo & Bhat, 2007). 

While comparative studies have confirmed the benefit of using a network buffer to 

operationalize land use mix, future research must carefully consider the distance used 

to define a network buffer when examining the association between land use mix and 

active travel (Oliver, et al., 2007). 

The decision to account for multiple activity locations, demonstrated in the 

creation of an activity space, has led to the development of a final class of sliding 

geographic scale. The concept of an activity space, which originated in the field of time 

geography, has reflected an attempt to recognize the actual and potential engagement 

of an individual in an activity provided at a surrounding land use (Fan & Khattak, 2008). 

Hence, the delineation of an activity space has reflected the spatial area in which the 

movements of an individual are confined (Lenntorp, 1976), which restricts any 

neighborhood effect to only include the environment actually used by an individual 

(Harvey, 2005). As such, the use of an activity space to measure the relationship 
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between land use mix and active travel behavior has the ability to represent individual-

based restrictions outside street network impedance. 

 

2.3.1.3 Perceptive geographic scale 

Beyond an objective measurement of land use mix represented by an 

individual’s activity space, there exists a subjective quality of the built environment 

related to an individual’s perception of what may be physically reached or factors in 

his/her decision for activity engagement (Horton & Reynolds, 1971). Attention to the 

subjective utility of the built environment may be objectively captured through the 

creation of a perceptive geographic scale in the form of a mental or cognitive map. In his 

seminal work into the topic, Lynch (1960) described these perceptive geographic scales 

as being the generalized picture of the exterior physical world held by an individual 

comprised of countless paths, edges, districts, nodes, and landmarks. Provided with this 

understanding, the ability to objectively define any built environment feature at a 

perceptive scale has represented a grim endeavor to travel behavior researchers since 

mental maps dynamically change over time based on the built environment qualities 

observed by an individual during the execution of an activity or trip (Arentze & 

Timmermans, 2005). 
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2.3.2 Concerns with operationalizing land use interaction 

In part due to the wide array of geographic scales at which a land use mix 

measure may be operationalized (Table 2), no consensus has been reached regarding 

the optimal scale to estimate the influence of mix on active travel (Duncan, et al., 2010). 

A clearer understanding of what combination of land use mix measure and geographic 

scale to assess the association between land use mix and active travel may be better 

informed by greater empirical testing of different scale arrangements in the same study. 

Ultimately, future land use mix and active travel studies must strive to address the 

conceptual and methodological limitations related to geographic scale selection. 

 

Table 2: Classification and Definition of Strategies for Operationalizing Land Use Interaction 

Classification of 
Geographic Scale 

Operationalization 
Strategy Definition 

Fixed Scale 

Administrative 
Delineation of a boundary by a community- or 
government-based entity to achieve specific organizational 
objectives 

Statistical 
Delineation of a territory solely for the collection of 
census-related data 

Artificial 
Generation of a uniformed, synthetic zoning system used 
to assess the neighborhood effect of point-based data 

Sliding Scale 

Areal Buffer 
Circular boundary created by the extension of a straight-
line distance from a particular activity location 

Network Buffer 
Boundary created by the extension of a line from a 
particular activity location along the nearby street network 

Activity Space 
Creation of a boundary based on the physical 
confinements of individual movement to nearby activity 
locations 

Perceptive Scale Mental Map 
Creation of a boundary based on both the physical and 
cognitive confinements of individual movement to nearby 
activity locations 
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2.3.2.1 Conceptual concerns 

A predominant theme in past studies into the association between land use mix 

and active travel has been the absence of strong conceptual deliberation to inform the 

choice of a geographic scale to operationalize any measure. Past adoptions of a fixed 

geographic scale to study the neighborhood effect of land use mix on active travel have 

likely been the result of analytical convenience or the availability of relatable 

information on the sociodemographic and housing attributes at the selected scale. 

Nevertheless, the choice of a fixed geographic scale as an operational unit to measure 

land use mix must be accepted as a decision without any theoretical connection to 

travel behavior (Guo & Bhat, 2007). As for the use of a sliding scale to operationalize 

land use mix, the practice of using a quarter-, half-, or one-mile buffer distance has been 

the standard for defining a feasible pedestrian environment. However, the continued 

use of these spatial extents has been done so with little acknowledgement to the idea 

that an active travel trip may differ by purpose and context (Schlossberg, 2006). Another 

conceptual concern with the use of a sliding geographic scale has been the assumption 

of an individual placed at the center of the scale having directionally invariant and 

complete knowledge of the built environment influence surrounding their activity 

locations or travel routes (Mitra & Buliung, 2012). In all, the conceptualization of a 

neighborhood boundary with the selection of a geographic scale has remained a 

conceptual dilemma facing researchers who study the association between local built 

environment effects and active travel outcomes (Gauvin, et al., 2007). 
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A second and related conceptual shortcoming ubiquitous in present travel 

behavior studies has involved the measurement of local land use mix or any 

neighborhood effect of the built environment at a single scale and spatial extent for all 

travel modes and purposes. Given the fact that any built environment measure will be 

sensitive to the selected geographic scale, a possibility exists that different strategies for 

operationalizing the built environment will only be relevant for certain trip contexts (Fan 

& Khattak, 2008). For instance, the choice of a certain combination of scale category and 

size may not represent the best strategy for measuring the effect of all built 

environment measures (Lee & Moudon, 2006b). In turn, the selection of the most 

relevant scale for operationalizing the built environment will likely depend on the travel 

aspect under examination. The travel time budget of an individual conducting a 

discretionary trip may be greater than that of an individual commuting, which may lead 

the former individual to potentially be influenced by a wider set of land use types within 

a larger activity space. As such, an administrative boundary may be more appropriate to 

measure the influence of land use mixing on commuting. Work-related travel may more 

likely be linked to the influences of a metropolitan region than a local geographic scale 

describing the activities of a neighborhood; whereas, a nonwork trip may be heavily 

influenced by the local land use patterns that induce active travel behaviors (Hong, et 

al., 2013). Moreover, the use of a larger geographic scale or spatial extent in the latter 

context may be too large to distinguish a pedestrian-oriented neighborhood from those 

neighborhoods that are not (Ewing, et al., 2003). 
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2.3.2.2 Methodological concerns 

The last point has also underscored a methodological limitation pertaining to 

past efforts of measuring the association between land use mix and active travel 

behavior. The geographic scale at which land use mix or other built environment 

information are available to a researcher has typically determined the unit of analysis. 

Past studies have simply relied on the best available data, which may be compiled from 

a variety of unrelated sources and aggregated to a geographic scale inconsistent with 

the study’s context (Ewing, et al., 2003). In considering the measurement of only the 

built environment elements that matter to a traveler, the operationalization of land use 

mix at a large fixed geographic scale will likely dilute the importance of land use mix on 

active travel by averaging out influential land use patterns with surrounding land use 

types not factoring into an individual’s travel decision (Guo & Bhat, 2007). Along the 

same lines, past sliding geographic scale applications, which have sought to only 

measure land uses in close proximity to the traveler, have failed to consider any 

impedance aside from network distance. In actuality, additional objective factors related 

to the physical environment, modal travel time, and traffic safety should also be 

considered as constraints on the land use types that factor into an individual’s travel 

decision. 

The modifiable areal unit problem (MAUP) has been a well-established 

methodological concern impacting the choice to use a fixed or sliding geographic scale 

to analyze the land use mix and active travel connection. Fotheringham and Wong 
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(1991) described the MAUP as being the sensitivity of analytical results to the definition 

of a geographic scale at which any spatial data are collected. Built environment data 

have been collected to understand their association with another non-modifiable entity 

such as an individual traveler, but the built environment effect has been reported at an 

arbitrary and modifiable scale without any intrinsic spatial meaning to the individual or 

land use. As such, geographic scale selection has reflected a subjective exercise of the 

researcher seeking to aggregate non-modifiable entities (Openshaw, 1983). Since the 

MAUP has been defined as a dilemma related to the selection of geographic scale and 

analytical unit, any evaluation of travel behavior must give careful consideration to 

these facets (Horner & Murray, 2002). However, disparity in the geographic scales 

previously used within the literature have complicated the debate of how best to 

operationalize land use mix for active travel research (Clark & Scott, 2014). This is 

because such variation in geographic scale selection has increased the likelihood that 

the MAUP has impacted the findings of previous studies using conventional land use mix 

measures (Hess, et al., 2001).  

Evaluating the impact of the MAUP on active travel behavior may be divided into 

scale and zoning effects. The level of aggregation used to measure the built 

environment has defined the former effect, while the configuration of a geographic 

scale system has defined the latter (Fotheringham & Wong, 1991). Variations in the size 

of geographic scale have resulted in a scale effect on analytical results (Mitra & Buliung, 

2012) in which inconsistent findings are attributed to the operationalization of land use 
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mix at different scales for the same travel outcome (Hong, et al., 2013). Additionally, 

alterations to the geographic scale that built environment data were originally collected, 

which is considered the basic spatial unit for measuring the spatial phenomena, have 

produced inconsistent results related to the representation of mix with an unintended 

zonal arrangement (Mitra & Buliung, 2012). Despite a long-standing recognition of the 

scale and zoning effect in the geography literature, the MAUP has received far less 

attention in research examining the built environment and active travel relationship. 

Future research would benefit from the use of multiple geographic scales to 

operationalize land use mix and a reporting of the estimation results assessing the 

association between active travel behavior and land use mix measured at varying 

geographic scales (Mitra & Buliung, 2012). 

The uncertain geographic context problem (UGCP) has more recently been 

presented as a concern for operationalizing the built environment with implications for 

future active travel research. As previously described, the identification of a suitable 

geographic scale or spatial context for measuring the importance of land use mix or any 

exposure measure has been an essential task for studying its effect on active travel 

behavior (Kwan, 2013). The UGCP has stated that empirical results from studies using 

area-based measures such as land use mix have been impacted by deviations in the 

choice of geographic scale from the true geographic context of the phenomenon’s 

influence on a studied travel behavior (Kwan, 2012). The past operationalization of land 

use mix at a fixed or sliding geographic scale has introduced some spatial and temporal 
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uncertainty to any empirical finding, which may be methodologically addressed by the 

adoption of a perceptive geographic scale. Spatial uncertainty has arisen from the belief 

that little is known about the actual geographic scale that exerts a contextual influence 

on the individual traveler, while the lack of knowledge about the timing and duration of 

these contextual influences on travel has resulted in temporal uncertainty regarding the 

application of fixed or sliding scale to operationalize land use mix (Kwan, 2012). 

 

2.4 Temporal Availability 

Time is a fundamental concept to the study of the transportation-land use 

connection since an individual’s ability to both access and participate in an activity at a 

given location is shaped by the temporal availability of that opportunity (Kwan, 2013). 

Since travel demand derives from the requirement of an individual to partake in an out-

of-home activity, any variation in the surrounding land use supply (e.g., temporal 

availability) will to some extent impact an individual’s revealed travel behavior (McNally 

& Kulkarni, 1997). Accordingly, the failure to account for the temporal availability of a 

land use (e.g., facility opening hours), a proxy for activity opportunity supply (Yoon & 

Goulias, 2010), has embodied a clear conceptual and methodological omission of past 

measures created to estimate the neighborhood effect of land use mixing on active 

travel decisions. An addition of temporal availability to a spatial land use mix measure 

specified with consideration to the other components of land use mix and geographic 
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scale carries considerable promise as an innovative policy instrument to help guide the 

adoption of new and established urban policies aimed toward encouraging active travel. 

A proposal to include the temporal availability component in future land use mix 

measures has drawn heavily from the study of time geography. An adoption of concepts 

introduced by this geography subfield, which has informed recent activity-based travel 

demand modeling approaches, has provided an adaptable framework for a systematic 

description of the spatial-temporal nature of behavioral constraints faced by an 

individual (Burns, 1979). Behavioral restrictions characteristic of this time geography 

strategy for understanding activity participation have been summarized as the 

capability, coupling, and authority constraints faced by a traveler (Hagerstrand, 1970). In 

this framework, the consideration of the temporal availability of an activity or land use 

represents a potential authority constraint to the behavior exhibited by a traveler, who 

cannot feasibly access a temporally unavailable opportunity. In thinking about shopping 

activity participation, an individual may only feasibly conduct this activity during the 

opening hours of the establishment (Neutens, et al., 2007). Extending this illustration to 

a land use mix metric, a land use serving as a proxy for this shopping activity would also 

only influence travel behavior if temporally available to the individual; therefore, a 

temporally unavailable land use should likewise not be considered in a metric evaluating 

the impact of land use mixing on travel behavior. 

Unfortunately, exposure measures such as land use mix have tended to ignore 

the authoritative role of temporal availability when examining the influence of 
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environmental determinants on individual travel behavior (Kwan, 2013). As such, 

empirical evidence reflecting any discrepancies in the temporal availability of different 

activity opportunities has been extremely scarce to date (Neutens, et al., 2011). 

Unsatisfactory consideration to the temporal availability of different opportunities, 

identified as the varying patterns of opening hours exhibited by different activity or land 

use types, has led to a static, timeless representation of the built environment’s effect 

on travel (Kwan & Weber, 2003). Pioneering research into the creation of an 

accessibility measure sensitive to the opening hours of an urban activity has highlighted 

that past accessibility measures without a temporal availability component have likely 

produced inflated findings by assuming all activities to be available at all times of the 

day (Weber & Kwan, 2002). As such, research supporting the creation of spatial-

temporal built environment measures has been described as being sorely needed; 

especially, empirical study into the effect of spatial-temporal measures on active travel 

behavior (Kim & Kwan, 2003). A statement for future analyses to identify the temporal 

patterns and spatial complementarity of different activity types was previously stressed 

by Goodchild & Janelle (1984). 

An extension of this constraint-based time geography approach to measuring 

activity accessibility holds considerable promise in providing a more thorough 

understanding of the association between land use mix and active travel behavior. 

Recent studies have adopted a spatial-temporal accessibility approach because of its 

sensitivity to temporal behavioral constraints such as the opening hours of an 
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opportunity (Neutens, et al., 2011). Yet, to-date, the limited application of these spatial-

temporal strategies has almost exclusively focused on activity participation demand and 

would greatly benefit from a greater descriptive understanding of the temporal supply 

of land use patterns around an activity opportunity (Yoon & Goulias, 2010; Yoon, et al., 

2014). Increased availability of disaggregate built environment data coupled with recent  

computational advancements has enabled the introduction of a spatial-temporal 

measure capable of representing complexities related to the temporal availability of 

certain land uses (Kwan & Weber, 2003). 

 

2.4.1 Representing temporal availability 

Recalling the typology of land use mix measures, the temporal availability 

component has only been studied in measures of accessibility. Explicit attention to the 

temporal availability of an activity location to an individual traveler in an accessibility 

measure has the potential to provide a higher quality time-space representation of the 

feasible opportunities available to an individual and, therefore, benefit the predictions 

of his/her travel behavior (Chen, et al., 2011). Traditionally, access to an activity location 

has been treated as a static temporal assumption with minimal acknowledgment to the 

diurnal variability of service provisions (Neutens, et al., 2012). However, the persistent 

application of accessibility measures with this static time assumption have marginalized 

the reality that these activity locations have specific temporal schedules or opening 

hours rendering them unavailable to a traveler at certain hours of the day (Landau, et 
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al., 1982; Kwan, 2013). A failure to accommodate these temporal schedules in an 

accessibility measure has additionally led to overestimations of an individual’s activity 

space (Schwanen & Jong, 2008). A comprehensive understanding of the spatial and 

temporal arrangement of activities related to the feasibility for individual travel 

between available opportunities in addition to an individual’s response to the built 

environment constraints has symbolized two key facets to any accessibility metric (Pirie, 

1979). Accordingly, formation of an accessibility measure capturing the spatial-temporal 

availability of activity opportunities and the constraints shaping individual behaviors has 

the capability for advancing present understandings of how the built environment 

influences travel behavior (Yoon, et al., 2014). 

 

2.4.1.1 Known temporal availability in accessibility measures 

Intuitively, the most direct strategy for accurately representing temporal 

availability within an accessibility measure has been to collect and incorporate data 

pertaining to the opening hours of an establishment. However, the collection of high-

quality temporal availability data has remained costly and time consuming (Kwan, 

2013); thus, hindering the adoption of this strategy. Applying a constraint-based 

approach to analyzing joint trip making, Neutens et al. (2007) proposed the creation of a 

spatial-temporal accessibility measure in which the analysis concentrated on the 

facilities in which opening hours were identified. The temporal availability of these 
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facilities may then be aggregated into any time interval to establish the area of an 

individual’s activity landscape for a specified time period (Neutens, et al., 2012).  

While an encouraging strategy for incorporating temporal availability into future 

measures, the limitation of data availability has confined past analyses to only explore a 

select set of facilities. Schwanen and Jong (2008) integrated the known temporal 

availability of daycare centers in Utrecht, the Netherlands to examine the impact of 

opening hours on the commuting behavior of one exemplar mother. Meanwhile, 

Delafontaine et al. (2011) collected information on the opening hours of 16 libraries in 

Ghent, Belgium to create a spatial-temporal measure of individual accessibility for use in 

an equity context. Until data on the known temporal availability of more business types 

become more readily available, future accessibility studies will be limited in the diversity 

of businesses they may analyze. A potential strategy for improving the variety of 

business with known temporal availability would be to collect complementary land use 

and business data when designing and conducting new activity-travel household surveys 

(Chen, et al., 2011). The collection of these data would further enable the creation of a 

temporal availability taxonomy for different activity or land use types (Yoon, et al., 

2014). 

 

2.4.1.2 Assumed temporal availability in accessibility measures 

A second strategy for reflecting temporal availability in a spatial-temporal 

accessibility measure has been to fix an assumed opening hour schedule on all facilities. 
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In the assumed temporal availability strategy, all facilities or those providing a similar 

service are assigned identical opening hours (Neutens, et al., 2011). In exploring the 

effect of geographic scale variability on individual accessibility, Kwan and Weber (2008) 

utilized a spatial-temporal accessibility measure based on the assumption of a prior 

study (Weber & Kwan, 2002) that all commercial and industrial opportunities were only 

temporally available from 6:00 am to 9:00 pm. In the latter study, an accessibility 

measure sensitive to temporal availability displayed significant variation across several 

fixed geographic scales. Refinements to this assumption have been made in other 

studies (Kim & Kwan, 2003), where an industrial opportunity was assumed to only be 

temporally available from 9:00 am to 5:00 pm, but a commercial opportunity was 

available from 9:00 am to 9:00 pm. While an assumed temporal availability 

representation in an accessibility measure marks an improvement over no account of 

temporal variability, Delafontaine et al. (2011) noted their use of known temporal 

availability highlighted significant differences in the distribution of opening hours among 

facilities of the same regime in both times of the day and days of the week. 

 

2.4.1.3 Activity-related temporal availability in accessibility measures 

Recent research has presented a strategy for measuring temporal availability 

acknowledging the difficulty of collecting existing opening hour data as well as the 

shortcomings of an assumed temporal availability strategy for measuring accessibility. 

Chen et al. (2011) introduced an activity-related strategy in which the revealed activity 
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arrival and departure times of an individual were used to assign a weighted percent of 

reachable workers per time interval for various establishments. In this activity-related 

strategy, a certain business type has been considered temporally available to an 

individual traveler if any employee for that specific industry was observed to be 

performing a work-related activity during that time period. By using revealed household 

travel survey data, an intensity of different opportunity types has been determined 

through the imputation of temporal availability data based on individual activity 

participation (Yoon, et al., 2014). Initial analyses using this strategy have discovered the 

arrival time of an individual to a facility may be a more accurate reflection of activity 

temporal availability than the departure time of an individual from his/her last activity 

(Yoon, et al., 2012). 

While an exciting prospect for generating a temporally-sensitive dataset when 

the collection of known temporal availability data is unachievable, an adoption of an 

activity-related strategy for measuring accessibility has several limitations. Dependence 

on a standardized system of business classifications may be insufficient as a proxy of the 

actual land use of an establishment, which could potentially have several functions 

(Yoon, et al., 2014). Similarly, the use of revealed activity arrival and departure times 

from survey respondents may be an inadequate proxy for deriving the temporal 

availability of an establishment that should be compared to external data sources when 

known temporal availability data become available (Chen, et al., 2011). Moreover, 

future accessibility research should consider advancements to the realism of an activity-
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related strategy for predicting temporal availability that account for businesses offering 

their employees flexible work schedules (Yoon, et al., 2012). 

 

2.4.1.4 Temporal availability in intensity and pattern measures 

While the inclusion of an authority constraint reflecting the temporal availability 

of an activity has received minimal attention in accessibility-related measures (Miller, 

1999) (Table 3), this component has received virtually no consideration when specifying 

intensity or pattern mix measures. The integration of temporal availability into 

measures of these other land use mix categories has the potential to enable an analysis 

of mixing at either the site- or neighborhood-level (Figure 1). The former distinction of 

temporal availability centers on a little-understood notion that land use mixing may 

occur within a single building (Kockelman, 1997) or space and that some land use types 

within a building may exhibit a synergistic relationship across different time periods.  

 

Table 3: Classification and Definition of Strategies for Representing Temporal Availability in Accessibility 
Measures 

Classification of 
Temporal Availability Definition 

Known 
Temporal Availability 

Time in which an activity location may be accessed according to stated opening 
hours 

Assumed 
Temporal Availability 

Fixed assignment of opening hours for all activity locations of a similar regime 

Activity-related 
Temporal Availability 

Imputed assignment of opening hours based on revealed participation in an 
activity offered by an urban opportunity  

 

The latter distinction of land use mixing that occurs at a neighborhood-level 

represents a more widely understood distinction in which certain land uses found in 
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close proximity may exhibit a synergistic relationship within the same time period. This 

representation of land use mix reflects the established ideal of smart growth supporters 

in which certain land uses (e.g., residence, market) may be integrated more 

harmoniously than other blends if the intention is to induce active travel outcomes. 

Current intensity and pattern measures inflate the neighborhood-level of land use 

mixing by not accounting for the temporal availability of activity locations. For instance, 

a grocery store located in close proximity to an individual’s residence may not be 

accessible to that individual if his/her out-of-home activity schedule excludes them from 

accessing the market during its opening hours (Kwan, 2013).  

 

2.4.2 Benefits of representing temporal availability 

Beyond its clear conceptual contribution, the incorporation of temporal 

availability in future land use mix measures may be translated into practical benefits 

related to the support of transportation-land use policies, identification of social 

inequities in spatial-temporal accessibility, and improvement of travel demand behavior 

modeling. Built environment measures representing temporal availability have direct 

implications on transportation policies affecting local communities (Neutens, et al., 

2011). Portland Metro has proposed an activity level hierarchy (14-hour, 18-hour, and 

24-hour) for select neighborhoods based on residential population, business activity, the 

built environment, and transportation options (Metro, 2011); however, the activity 

spectrum has not been supported by any empirical-based measure with sensitivity to 
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temporal availability. A measure sensitive to the temporal availability of land use types 

may help direct active travel initiatives seeking to bring functional origin and destination 

pairings closer to one another. Relatedly, an identification of the precise blend of land 

use types needed for an efficient spatial-temporal distribution of activity locations 

informed by a spatial-temporal land use mix measure may help guide infill or new 

development projects and more precisely model the active travel implications.  

 

 
Figure 1: Illustration of Site- and Neighborhood-Level Temporal Availability of Mixing Land Use Types 

 

In addition to an improvement in neighborhood design efficiency, adoption of a 

spatial-temporal measure holds potential toward informing the management of 

businesses considering an extension of opening and closing hours (Yoon, et al., 2014). 

The liberalization of opening hours may enable individuals to conduct activities outside 
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standard business hours; subsequently, providing individuals with an ability to combine 

out-of-home activities and improve their prospects for trip chaining (Neutens, et al., 

2011). Also, an inclusion of the temporal availability component in future measures will 

improve the instruction of shared-parking arrangements in which a parking structure 

used by the employees of an office building during the day may be used in the evening 

by drivers accessing entertainment opportunities (Cervero, 1996). For each application, 

research is needed to enhance the capability of temporally sensitive measures to inform 

transportation planning and practice (Neutens, et al., 2011). 

Another exciting prospect from the standpoint of active travel research is the 

consideration of the spatial-temporal accessibility inequities faced by individuals who 

rely on active travel modes (Neutens, et al., 2012). An account of the temporal 

availability of urban opportunities offers significant insight into the ways that certain 

individuals or market segments may be affected by variations in the opening hours of 

facilities found within a neighborhood (Weber & Kwan, 2002). Thus, the creation of a 

land use mix metric accounting for temporal availability has an ability to evaluate how 

different opening hour configurations for certain types of services may benefit or hinder 

those individual disparities that exist in a metropolitan region for accessing basic human 

services (Delafontaine, et al., 2011). Without consideration for temporal constraints 

such as opening hours, conventional mix measures have remained insensitive to 

fluctuations in the availability of certain activities over the course of a day or week. A 
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consequence of this mismatch between the need for activity engagement and temporal 

availability of the activity may be social exclusion (Neutens, et al., 2011). 

Finally, specification of a land use mix measure incorporating an authority 

constraint will improve activity-based travel demand models, which have to-date largely 

concentrated on the coupling constraint of individuals within a household interacting 

with one another (Yoon & Goulias, 2010). By disregarding the temporal availability of 

certain activities or land uses, present models may underestimate the demand for 

conducting certain activities and in turn distort future travel demand patterns by poorly 

allocating where activities may occur in the future (Kwan, 2013). For that reason and 

others, the representation of spatial-temporal travel decisions and the built 

environment factors influencing activity participation must be better understood within 

future activity-based travel research (Yoon, et al., 2014). The creation of a 

comprehensive land use mix measure accounting for the temporal availability of specific 

land use types helps to fulfill this request. 

 

2.5 Synthesis 

Future measures must improve how the land use mix and geographic scale 

components of the construct are represented, while introducing the temporal 

availability component. The prior sections of this literature review have identified each 

component and discussed the conceptual and methodological concerns hampering 

these three interrelated components of a spatial-temporal land use mix measure. As 
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detailed disaggregate data and improved technologies become increasingly available to 

researchers, the importance to advance constructs related to each of these land use mix 

components will become ever more important to understanding the true association 

between land use mix and active travel behavior. Urban planning and public health 

researchers interested in the adoption of land use mix policies must continue to 

challenge the adoption of flawed measures in order to provide decision makers with a 

more astute assessment of how increased local land use mixing relates to active travel. 

Table 4 synthesizes the strategies for representing each component of a spatial-

temporal land use mix measure and rates the conceptual and operational complexity of 

adopting each strategy. 

 

Table 4: Conceptual and Operational Complexity of Representing the Strategies for each Land Use Mix 
Component 

Land Use Mix Component Strategy for Representing Land Use Mix Component 

Land Use Interaction  Accessibility  Intensity  Pattern 
Geographic Scale  Fixed  Sliding  Perceptive 
Temporal Availability  Known  Assumed  Activity-related 

Complexity Level Low Moderate High 
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Chapter 3: An Activity-Related Land Use Mix Construct and its Connection to 

Pedestrian Travel 

 

3.1 Introduction 

The sustained popularity for transportation-land use interactions investigation 

over the past three decades has fundamentally shaped modern planning scholarship 

(Boarnet, 2011). Attraction for research in this sub-discipline emerges from a prospect 

for planners to moderate travel behavior by physically altering the urban landscape 

(Ewing & Cervero, 2010). Studies into this central principle of the transportation-land 

use connection generally accept that a compact neighborhood characterized by a 

diversity of activity destinations and traditional street network design supports 

pedestrian travel (Cervero & Kockelman, 1997). A recognition evidenced by the growing 

adoption of transportation-land use strategies by local, regional, and state agencies; 

whose guiding visions and programs emphasize the many purported transportation, 

land use, and public health benefits related to neighborhood land use mixing. 

From a transportation perspective, smart growth policies intended to increase 

local land use mixing bring functional origins and destinations closer; therefore, 

decreasing trip distances and making walking competitive with faster travel modes 

(Clifton, et al., 2008). Land use mixing is also viewed as a strategy for balancing travel 

demand uniformly across the day (Cervero, 1996), promoting trip chaining (Maat & 

Timmermans, 2006), and reducing vehicle distance traveled, mode selection, and 
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ownership (Cervero, 1989; Kockelman, 1997). Viewed through a land use planning lens, 

policies aimed at siting diverse land uses in a compact setting provide a visibly 

interesting built environment conducive to walking (Reilly & Landis, 2003; Forsyth, et al., 

2008). Stimulating mixed-use development also provides a policy instrument to 

encourage urban revitalization and slow rural land consumption (Downs, 2005).  

Public health researchers investigating the link between chronic disease risk 

factors and the built environment also exude the benefits of smart growth policies 

(Christian, et al., 2011; Wineman, et al., 2014). An intermixing of complementary land 

use types provides neighborhood residents and visitors a diversity in destination types 

that facilitates walking and physical activity (Forsyth, et al., 2008; Brownson, et al., 

2009). Other physical health benefits such as reduced vehicle emissions exposure 

through congestion mitigation (Frank, et al., 2008) and mental health-related benefits 

such as increased neighborly communication or an improved sense of place (Manaugh & 

Kreider, 2013; Song, et al., 2013a) are also attributed to mixed-use landscapes. 

Ultimately, multidisciplinary research has heralded land use mix as a planning 

goal that policymakers must realize to form neighborhoods favorable to active, healthy 

lifestyles (Duncan, et al., 2010). However, this connection between land use mix and 

pedestrian travel remains complicated by the many measures chosen by researchers to 

objectively illustrate this intangible environmental construct (Manaugh & Kreider, 

2013). A division between research and practice resulting in the provision of measures 



63 
 

with imperfect theoretical foundations, which likely hinders the implementation of land 

use mix as a performance metric in practice (Gehrke & Clifton, 2016). 

This paper critiques current practice and introduces a land use mix measure 

reflecting the composition and configuration of local land uses. Specifically, this study 

depicts mix as a latent construct in which the ideal composition of local land use types is 

guided by observed activity distributions and their spatial arrangement is explicitly 

expressed. Statistically significant associations are found between the proposed land 

use mix construct and pedestrian travel behaviors. Planners who wish to promote 

walking may benefit from this conceptualization of land use mix. 

 

3.2 Land Use Mix Measurement and Pedestrian Travel 

Land use mix is aptly defined as the level of integration among different land use 

types in a neighborhood (Saelens, et al., 2003). A succinct description that presents a 

challenging array of choices to quantify the mixing of neighborhood land uses (Brown, et 

al., 2009). Given this challenge and a recognition that mixed-use settings improve active 

transport viability (Handy, 2005), land use mix has become the most frequently 

evaluated built environment determinant of physical activity (Brownson, et al., 2009). 

With this in mind, planners must be cognizant of how this environmental phenomenon 

is operationalized to ensure that policy and practice are guided by empirical evidence 

originating from proposed theory (Frank, 2000). 
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The theory supporting land use mix and the measurement of an ideal level of 

integration among different land use types will likely vary based on the outcome of 

interest. In this study of pedestrian travel outcomes, I was interested in operationalizing 

land use mix as a construct grounded in travel behavior theory. The following 

subsections, organized by the quantification of land use mix as a distance, intensity, or 

pattern measure (Song & Rodriguez, 2005), offer a transportation-related conceptual 

basis for adopting a measurement type and a review of pedestrian travel studies 

exploring each dimension. 

 

3.2.1 Distance measures 

Accessibility is the ease of an individual to reach an opportunity from a given 

activity location (Kwan & Weber, 2008). Operationalized as a mix measure, the 

opportunity and activity locations are presented function-related land use designations, 

while the ease of travel between locations is customarily conveyed as distance. A 

resulting metric quantifies the spatial arrangement of two land uses as the relative 

burden of traveling between them (Clifton, et al., 2008). By reducing the distance 

between locations, walking’s feasibility increases and the competitive edge of faster 

travel modes diminishes. 

Studying this connection between distance-based accessibility and walking, 

Krizek and Johnson (2006) found individuals living within 200 meters of a retail 

establishment were more likely to walk than residents living at least three times farther 
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from a similar land use. Conversely, Lee and Moudon (2006a) modeled a negative 

association between proximity of mixed-use neighborhood centers and the likelihood to 

walk; whereas, Reilly and Landis (2003) found a positive link between access to 

commercial uses and this outcome. In a study of walk frequency, Shay et al. (2006) 

discovered a shortened distance to a commercial center positively impacted utilitarian 

travel. Other studies have noted the positive connection between grocery store 

proximity and walk trip frequency (Handy & Clifton, 2001; Cao, et al., 2006; Handy, et 

al., 2006). 

In general, studies of distance-based accessibility and walking support the 

hypothesized transportation-land use connection. However, while quantifying mix as a 

distance-based measure is conceptually simple, its adoption as an area-based summary 

is empirically limited (Brownson, et al., 2009). Distance measures provide insufficient 

detail by only measuring the spatial proximity of two activity locations, solely providing 

a summary calculation for the origin, and failing to quantify the quality of the described 

link. 

 

3.2.2 Intensity measures 

Intensity measures quantify the frequency or percent of activity locations in a 

landscape dedicated to a specific land use type (Brownson, et al., 2009; Song, et al., 

2013a). A count of land use types is a proxy for how many potential trip origins or 

destinations exist within a neighborhood (Hess, et al., 2001), while a percent explains 
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the scarcity or dominance of an activity type (Song, et al., 2013a). Both the frequency 

and size of activity locations, or land uses, contribute to neighborhood accessibility and 

the increased willingness of an individual to walk for activity fulfillment (Handy, 1993). 

Studying the environmental determinants of physical activity, Hoehner et al. 

(2005) discovered that residents with a high intensity of nonresidential destinations 

within a quarter-mile of their home had an increased propensity for walking. Specifying 

a single activity type, Frank et al. (2007) and Boarnet et al. (2011) found an increased 

intensity in recreational spaces and retail stores, respectively, increased this likelihood 

to walk. Kerr et al. (2007) noted the nearby presence of a recreational or commercial 

land use impacted youth walk mode choice. Exploring its connection to time spent 

walking, past studies found an increased intensity of grocery stores, offices, retail shops, 

and schools (Lee & Moudon, 2006a; McConnville, et al., 2010) and commercial 

establishments (Nagel, et al., 2008) increased pedestrian travel. In a study of ten metro 

regions, Boer et al. (2007) operationalized mix as the count of unique business types 

within a neighborhood and discovered a positive relationship with distance walked. 

Meanwhile, Forsyth et al. (2008) found the percent of area devoted to a social land use 

positively predicted distance and time spent walking for subsistence and maintenance 

trips. 

Despite variation in the nonresidential land uses analyzed, a higher intensity of 

out-of-home activity locations was commonly connected to increased pedestrian travel. 

The conceptual link is straightforward: a greater intensity of nonresidential land uses 
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near an individual’s residence enhances the practicality of walking to daily life activities 

by reducing travel distance (Handy, et al., 2002). However, mix as an intensity measure 

is limited by its inability to summarize the count or percentage of multiple land uses as a 

single value and sensitivity to spatial scale selection (Song, et al., 2013a). 

 

3.2.3 Pattern measures 

A final measurement category quantifies mix as the composition and 

configuration of local land use types. In transportation-land use study, land use mix as a 

pattern measure has exclusively been measured as the composition, or distribution, of 

different land use types in a neighborhood (Frank & Pivo, 1994). A neighborhood with a 

mixture of both residential and nonresidential land uses influences travel demand by 

inducing internal walk trips that substitute for prospective out-of-neighborhood 

motorized trips (Cervero & Kockelman, 1997). Regularly, a version of the land use 

entropy index, introduced to planning research by Cervero (1989), has summarized the 

degree of mixing in an area. 

Analyzing the built environment determinants of travel in 15 regions, Ewing et al. 

(2015) found an increase in the entropy score of three land use types (residential, 

commercial, and public) within a quarter-mile of the traveler’s residence positively 

predicted walk mode choice. Earlier, Zhang and Kukadia (2005) discovered the balance 

of residential, commercial, and industrial land uses near a residence became a stronger 

predictor of walking as the spatial extent of operationalization increased. Summarizing 



68 
 

the evenness amongst these same three land uses, Wineman et al. (2014) discovered a 

negative link with time spent walking; whereas, Rajamani et al. (2003) modeled a 

positive link with walk mode choice for nonwork travel when a fourth class reflecting all 

other land uses was incorporated. Frank et al. (2008) echoed this latter finding in a 

Seattle-based study associating the entropy score of residential, office, retail, and 

entertainment land uses with walk mode choice. A previous study (Frank, et al., 2004) 

summarizing the balance of residential, office, commercial, and institutional land uses in 

Atlanta neighborhoods found increased evenness predicted distance walked. Studying 

active travel in San Francisco, Cervero and Duncan (2003) generated a land use diversity 

factor indicated by residential, office, retail, and industrial balance at the trip origin and 

found the factor positively predicted the decision to walk. 

This evidence and prior reviews (Saelens & Handy, 2008; Brownson, et al., 2009) 

mostly support a positive relationship between entropy-based indices and pedestrian 

travel. However, evenness is often depicted as land use mix despite only summarizing a 

landscape’s composition of land use types and not their spatial arrangement. As a 

result, neighborhoods with considerably different configurations of land use types can 

produce identical entropy scores (Hess, et al., 2001; Manaugh & Kreider, 2013). Further, 

a neighborhood with an entropy score of one is assumed to embody an ideal level of 

land use mixing for travel; yet, no theoretical foundation links an equal balance of all 

land use types with demand (Rodriguez, et al., 2009, Song, et al., 2013a). Since land use 

mix is intrinsically a spatial phenomenon, an apt depiction must not only measure the 
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diversity of land use types in a neighborhood, but also convey the configuration of these 

parcels. Relatedly, entropy indices typically fail to consider the functional 

complementarity amongst the assessed land use types. A consequence of these 

oversights has been the adoption of theoretically flawed measures of composition and 

inattention to the pattern aspect of configuration. By measuring land use mix based on 

composition and configuration, a more robust investigation of this environmental 

phenomenon and its theorized link to pedestrian travel will be achieved (Hess, et al., 

2001). 

 

3.3 Land Use Composition and Configuration 

Spatial heterogeneity describes the complexity in composition and configuration 

of landscape patches. In landscape ecology, composition is the number of land use 

patches or proportion of each type, while configuration reflects the spatial 

arrangement, shape, and dissimilarity of landscape patches (Li & Reynolds, 1994; 

Turner, 2005). The field is founded on the notion that these paired pattern aspects 

comprise landscape structure, which in turn strongly impact behavioral processes 

(McGarigal & McComb, 1995). Rather than defining urban development patterns, the 

motivation of landscape ecology research has centered on understanding how these 

aspects inform environmental protection and resource conservation (Clifton, et al., 

2008). Consequently, interest in the quantification of spatial heterogeneity has 
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accompanied technological advancements to offer researchers with myriad measures to 

assess landscape change in the name of environmental stewardship (Gustafson, 1998). 

 

 
Figure 2: Landscape Representations of Complexity in the Pattern Aspects of Land Use Composition and 
Configuration 

 

However, examining the composition and configuration of natural environments 

may also offer insight into how different land use patterns influence travel. Particularly, 

how complexity of each pattern aspect can be better understood to produce a more 

rounded depiction of land use mix and its connection to pedestrian travel. Figure 2 is a 

schematic of how increased complexity in composition and configuration is more 

characteristic of a neighborhood with greater land use mixing. I reasoned that 

Landscape D exhibits the spatial heterogeneity exemplified in traditional downtown 
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settings celebrated for their intermingling of diverse activity locations (Cervero, 1989), 

which best supports walking. 

To date, planning research has almost entirely studied the travel outcomes of 

mixed-use development patterns by employing measures insensitive to spatial 

arrangement. An unintended result has been the implementation of mix measures that 

imperfectly reflect the increased intensity, diversity, and integration of land use types 

described by urban form theory as sustainable land development (Grant, 2002). In 

response, this study aims to (a) provide planners with a land use mix measure 

quantifying land use composition and configuration, and (b) demonstrate the link 

between this multifaceted construct and pedestrian travel. 

 

3.4 Study Area and Land Use Data 

This study examines the interactions between landscape pattern and walking 

within six counties located in Oregon’s Willamette River Valley. An expansive area was 

chosen to capture variations in landscape and travel patterns found across the three 

metro regions of Portland, Salem, and Eugene. Portland is the population and economic 

hub of the study area with a metro region reaching into Multnomah, Washington, and 

Clackamas counties. Salem is the state capitol located in Marion and Polk counties, and 

Eugene is located entirely in Lane County. Each urbanized area is enclosed by a state 

mandated growth boundary controlling expansion and promoting efficient development 

patterns. 
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Table 5: Distribution of Parcels Categorized with the Land-Based Classification Standard (LBCS) 

LBCS Code Land Use Function Parcels Area (Sq. Miles) 

1000 Residence or accommodation 
 

694,752 
(76.82%) 

306.48 
(3.24%) 

2000 General sales or services 
 

35,418 
(3.92%) 

63.80 
(0.68%) 

3000 Manufacturing and wholesale trade 
 

11,339 
(1.25%) 

94.83 
(1.00%) 

4000 Transportation, communication, information, 
and utilities 

2,425 
(0.27%) 

69.17 
(0.73%) 

5000 Arts, entertainment, and recreation 
 

8,740 
(0.97%) 

317.02 
(3.35%) 

6000 Education, public administration, health care, 
and other institutions 

14,630 
(1.62%) 

273.73 
(2.90%) 

7000 Construction-related businesses 
 

1,211 
(0.13%) 

1.39 
(0.01%) 

8000 Mining and extraction establishments 
 

194 
(0.02%) 

15.89 
(0.17%) 

9000 Agriculture, forestry, fishing and hunting 
 

125,065 
(13.83%) 

7,606.96 
(80.48%) 

undefined N/A 
 

10,624 
(1.17%) 

702.18 
(7.43%) 

  904,398 9,451.45 

 

To measure land use type composition and configuration in landscapes across 

the six counties, collection of a universal parcel dataset and adoption of a standardized 

classification scheme was paramount. Parcel-level data with linked property attributes 

were provided by the metropolitan planning organizations, who maintained these 

spatial data sources shared by county assessment and taxation offices. Data were 

amassed in a Geographic Information System and discrepancies in land use type 

assignment were reconciled using the property classification established for each tax lot 

by the Oregon Department of Revenue. After property code identification, all parcels 

were assigned one of nine land use function codes in accordance to the American 

Planning Association’s Land-Based Classification Standards (Table 5). Finally, the study 

area was delineated into 65,312,000 66-foot grid cells, which standardized the unit of 
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analysis to approximate the smallest land parcels. Each artificial grid cell was assigned a 

land use classification based on the underlying tax lot information. 

 

3.5 Land Use Mix Indicators and Construct Measurement 

A set of land use mix indicators centered on the aforementioned theoretic principles 

of composition and configuration were calculated using these land use data. Each 

indicator was operationalized at a one-quarter, one-half, and one-mile grid cell extent to 

help understand variation in the neighborhood effects of land use mixing. A land use 

mix construct was then measured using the resulting indicators. 

 

3.5.1 Land use mix indicators 

 

3.5.1.1 Land use composition 

A core set of composition metrics assess the number of land use categories, 

relative proportion of each category, and diversity amongst chosen categories 

(Gustafson, 1998). Translated to a planning context, the first two sets of metrics assess 

the count or percent of parcels in a neighborhood dedicated to a particular land use 

type; whereas, diversity is a function of both the intensity and distribution of land use 

types in a landscape. To ensure composition was reflected in the land use mix construct, 

two indicators of diversity, grounded in planning theory, were calculated. 
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First, an indicator of the number of contiguous patches of either residential or 

retail land uses was calculated. This land use composition measure reflected the 

intensity in residential and nonresidential activity concentrations, normalized by the 

number of patches distributed in the landscape. The patch frequency for these two land 

use types was jointly captured to account for the interspersion of localized retail centers 

and residential pockets; both hallmark smart growth features. 

Second, a land use diversity metric was developed to account for the distribution 

of all land use types in a landscape. This indicator describes activity-related 

complementarity (ARC) or localized land use balance based on derived travel demand 

rather than spatial equilibrium. 

 

𝐴𝑅𝐶 = 1 − ∑ [𝑃𝑖 ∗
|𝑃𝑖−𝐹𝑖|

1−𝐹𝑖
]𝑛

𝑖=1         (1) 

 

In Equation (1), 𝑛 is the number of land use types, 𝑃𝑖 is the proportion of area 

dedicated to land use type 𝑖, and 𝐹𝑖 is an activity factor associated with each land use 

type in a landscape. If land use types serve as proxies for trip ends, then a land use mix 

indicator should measure the degree of complementarity among those land uses that 

derive travel demand (Hess, et al., 2001). Hence, these activity factors measure the 

percent of sampled trip ends terminating at one of nine land use types:  𝐹1000 = 0.41, 

𝐹2000 = 0.31, 𝐹3000 = 0.03, 𝐹4000 = 0.01, 𝐹5000 = 0.01, 𝐹6000 = 0.17, 𝐹7000 = 0.01, 

𝐹8000 = 0.01, 𝐹9000 = 0.06. For instance, in the study sample, 31-percent of all trips 
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terminated at a location providing general sales or services. The term |𝑃𝑖 − 𝐹𝑖| defines 

the absolute difference between the landscape area dedicated to land use type 𝑖 and 

the observed trip attraction for activities located at land use type 𝑖. Further dividing the 

absolute difference by 1 − 𝐹𝑖 produces a ratio emphasizing land use types with higher 

observed levels of travel demand and deemphasizing those with less. The resulting ratio 

is then multiplied by 𝑃𝑖 to adjust it by the observed spatial proportion of the land use 

type. 

Akin to an entropy index score, this pattern metric ranges in value from zero to 

one. A score of zero indicates a landscape dominated by a single land use type; whereas, 

a score of one indicates a landscape where the spatial allocation of all land use types 

perfectly matches the observed attraction for activities. As such, a landscape with a high 

proportion of residences and retail stores scores higher than a landscape with a high 

proportion of land dedicated to agriculture or manufacturing. 

 

3.5.1.2 Land use configuration 

In complement to these composition measures are those spatial heterogeneity 

measures of a landscape using patch- or pixel-based land use configuration indices 

(Gustafson, 1998).  A maximum patch size measure was calculated by determining the 

largest area of adjoining parcels of a single land use and then normalizing this 

calculation by overall landscape area. This indicator identified landscapes with high 

patch aggregation or isolation, independent of the land use types in a landscape. 
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Finally, a pixel-based metric of patch disaggregation and interspersion specific to all land 

use types was calculated. Landscape ecologists commonly apply a contagion index 

(O'Neill, et al., 1988; Li & Reynolds, 1994) to differentiate landscapes with a small 

number of contiguous patches from those with an intermixing of dissimilar patch types, 

which characterizes a landscape with a high level of land use integration. (Clifton, et al., 

2008). 

 

𝐶𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = 1 +
∑ ∑ [(𝑃𝑖𝑗) ln(𝑃𝑖𝑗)]𝑛

𝑗
𝑛
𝑖

2 ln(𝑛)
       (2) 

 

The numerator in Equation (2) is the entropy index adopted from information 

sciences (Shannon & Weaver, 1949), where 𝑃𝑖𝑗 is the probability that two randomly 

selected adjacent 66-foot grid cells in a landscape belong to patch type 𝑖 and 𝑗. As the 

pixels in a landscape become more fragmented, the contagion index score nears a value 

of zero. Although contagion index calculation is complicated by the construction of a 

spatial dissimilarity matrix, this configuration metric provides a unique representation of 

the neighboring land use contrasts in a landscape (Li & Reynolds, 1994). 

Together, these four metrics reflect a parsimonious collection of independent 

land use mix indicators. However, while landscape pattern may sufficiently be quantified 

using a handful of chosen metrics, planners must be aware that indicators chosen to 

reflect these unique aspects may be correlated (Leitao, et al., 2006). Table 6 provides a 
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summary for each land use mix indicator, operationalized at the three artificial grid 

extents. 

 

Table 6: Descriptive Statistics and Zero-Order Correlation Matrix of Indicators at Three Geographic Scales 

     Land Use Mix Indicator 

Land Use Mix Indicator Mean SD Min Max 1 2 3 4 

One-Quarter Mile Grid         
     1: Residential and Retail Patch 
Richness 

0.032 0.116 0.000 1.000 ---    

     2: Activity-related Complementarity 0.049 0.151 0.000 0.941 0.769 ---   
     3: Maximum Patch Size 0.941 0.154 0.039 1.000 0.662 0.806 ---  
     4: Contagion Index 0.953 0.096 0.359 1.000 0.588 0.699 0.831 --- 
One-Half Mile Grid         
     1: Residential and Retail Patch 
Richness 

0.036 0.112 0.000 1.000 ---    

     2: Activity-related Complementarity 0.070 0.179 0.000 0.924 0.756 ---   
     3: Maximum Patch Size 0.917 0.184 0.027 1.000 0.649 0.830 ---  
     4: Contagion Index 0.941 0.105 0.397 1.000 0.583 0.729 0.820 --- 
One Mile Grid         
     1: Residential and Retail Patch 
Richness 

0.037 0.103 0.000 0.941 ---    

     2: Activity-related Complementarity 0.092 0.200 0.000 0.913 0.718 ---   
     3: Maximum Patch Size 0.891 0.211 0.028 1.000 0.638 0.853 ---  
     4: Contagion Index 0.926 0.112 0.398 1.000 0.590 0.763 0.816 --- 

Note: An italicized value indicates a negative Spearman correlation value. 

 

3.5.2 Land use mix measurement 

Confirmatory factor analysis (CFA) was used to identify a latent construct 

reflective of the paired pattern aspects of composition and configuration.  The adoption 

of a CFA framework provided a hypothesis-driven process for measuring relationships 

between a set of observed indicators supported by a priori theory and evidenced to 

reflect an underlying construct (Brown, 2006). Accordingly, informed by planning and 

landscape ecology theory, a latent variable model was specified to identify a land use 

mix construct supporting the interrelationships among four objective composition and 



78 
 

configuration indicators within a landscape. A landscape with high land use mixing is 

hypothesized to reflect complexity in not only land use composition, but also spatial 

configuration. Table 7 provides results of three CFA models, which were estimated at 

varying spatial scales. 

 

Table 7: Confirmatory Factor Analyses of Land Use Mix Operationalized at Three Geographic Scales 

Land Use Mix Indicator B SE (B) β p 

CFA Model 1: One-Quarter Mile Grid     
     Residential and Retail Patch Richness 0.542 0.003 0.665 0.000 
     Activity-related Complementarity 0.909 0.004 0.850 0.000 
     Maximum Patch Size * 1.000 --- 0.921 --- 
     Contagion Index * 0.645 0.001 0.955 0.000 
CFA Model 2: One-Half Mile Grid     
     Residential and Retail Patch Richness 0.416 0.005 0.631 0.000 
     Activity-related Complementarity 0.922 0.006 0.873 0.000 
     Maximum Patch Size * 1.000 --- 0.922 --- 
     Contagion Index * 0.592 0.002 0.960 0.000 
CFA Model 3: One Mile Grid     
     Residential and Retail Patch Richness 0.326 0.008 0.617 0.000 
     Activity-related Complementarity 0.911 0.009 0.887 0.000 
     Maximum Patch Size * 1.000 --- 0.922 --- 
     Contagion Index * 0.551 0.004 0.955 0.000 

Note: Dashes (---) indicate standard error was not estimated. One star (*) indicates measure was reverse-
coded. 
Model 1: χ2 (2) = 139.621, p = 0.000. CFI = 0.999, TLI = 0.996, RMSEA = 0.021, and n = 163,280. 
Model 2: χ2 (2) = 282.127, p = 0.000. CFI = 0.993, TLI = 0.979, RMSEA = 0.059, and n = 40,820. 
Model 3: χ2 (2) = 149.182, p = 0.000. CFI = 0.987, TLI = 0.960, RMSEA = 0.085, and n = 10,205. 

 

Findings from the CFA models provided compelling evidence of convergent 

validity since the latent construct was indicated by four strongly correlated metrics of 

land use composition and configuration. Although each model chi-square was significant 

and the root mean square error of approximation (RMSEA) for the one-mile 

measurement model was above 0.06; both the comparative fit (CFI) and Tucker-Lewis 

indices (TLI) were above 0.95, supporting acceptable model fit to the sampled datasets. 
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Measurement at three spatial extents had the twofold benefit of describing the 

variation of the spatial phenomenon and confirming that the construct was predictive of 

the chosen indicators. The four land use mix indicators for each common factor model 

had strong standardized loadings (β≥0.60), with the two configuration indicator loadings 

being strongest and negatively correlated with the two composition indicators. 

Bartlett factor scores representing linear combinations of the observed 

indicators were then predicted for landscapes at each grid size. Prediction of factor 

scores permitted the estimation of the mix construct in behavioral models of pedestrian 

travel. The mean centered scores denoted land use mixing levels across the Oregon 

Willamette River Valley, where positive factor scores described an above-average 

complexity in land use composition and configuration. These predicted scores ranged in 

value from -0.07 to 0.86 for landscapes measured with one-quarter mile grid cells, -0.09 

to 0.90 for one-half mile landscapes, and -0.12 to 0.88 for those at one mile. Figure 3 

provides a map of these predicted factor scores at the smallest grid cell extent for the 

three metropolitan regions within the study area. Land use mix tended to be greater in 

the city centers with lower mixing levels found near the urban growth boundaries. 
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Figure 3: Map of Predicted Scores of Land Use Mix Construct at One-Quarter Mile Grid Cells for Sample of 
Metropolitan Regions in Oregon Willamette River Valley 

 

3.6 Connecting Land Use Mix to Pedestrian Travel 

A second study objective was to establish a direct connection between the land 

use mix construct and pedestrian travel. Data from the Oregon Household Activity 

Survey, a statewide household survey noting weekday travel and activity patterns of 

46,414 individuals from 19,932 randomly sampled households between 2009 and 2012, 

were analyzed. All participants completed a one-day travel diary providing information 

about their activity locations, trip purposes, trip distances, and modal decisions as well 

as self-reported sociodemographic and economic information about themselves and 

household members. A subsample of 14,264 adults from 8,725 households residing in 
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the study area was used to estimate the impact of the latent land use mix construct on 

walk mode choice and home-based walk trip frequency. 

 

3.6.1 Walk mode choice 

The binary logistic estimation of six models compared the predictive power of 

the land use mix construct and entropy index on walk mode choice at the trip origin 

(Table 8). Each final model explored the modal contribution of the respective land use 

mix measures, operationalized at three spatial scales, to a reduced model accounting for 

both household and individual socioeconomic determinants as well as trip distance. 

These relationships were explored for all travel conducted within two miles of the trip 

origin, which reduced the sample to only encompass those trips in which walking was a 

feasible transportation decision. The choice of a two-mile threshold was a sample-based 

judgement based on the 99th percentile of the observed walking trips in the subsample 

of 64,060 trips and embodied a behaviorally defensible distance of mode availability.  

 

Table 8: Binary Logistic Model Estimation Results of Trip-Level Walk Mode Choice (N = 29,198) 

 One-Quarter Mile Grid One-Half Mile Grid One Mile Grid 

 Model 1A Model 1B Model 2A Model 2B Model 3A Model 3B 

 B (SE) B (SE) B (SE) B (SE) B (SE) B (SE) 

Intercept  1.173 1.812 0.916 1.781 0.596 1.658 
 (0.114)*** (0.098)*** (0.127)*** (0.105)*** (0.139)*** (0.112)*** 
Age       
   18 to 34 years 0.803 0.808 0.796 0.808 0.798 0.807 
 (0.072)*** (0.072)*** (0.072)*** (0.072)*** (0.072)*** (0.072)*** 
   35 to 44 years 0.432 0.445 0.420 0.444 0.429 0.443 
 (0.070)*** (0.070)*** (0.070)*** (0.070)*** (0.070)*** (0.070)*** 
   55 to 64 years 0.151 0.156 0.144 0.156 0.149 0.156 
 (0.061)* (0.061)* (0.061)* (0.061)* (0.061)* (0.061)** 
   65 years and older -0.392 -0.405 -0.396 -0.405 -0.380 -0.402 
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 (0.062)*** (0.062)*** (0.062)*** (0.062)*** (0.062)*** (0.062)*** 
Education       
   High school or less -0.250 -0.258 -0.249 -0.258 -0.246 -0.259 
 (0.064)*** (0.064)*** (0.064)*** (0.064)*** (0.064)*** (0.064)*** 
   Some college -0.405 -0.402 -0.401 -0.402 -0.401 -0.404 
 (0.062)*** (0.062)*** (0.062)*** (0.062)*** (0.062)*** (0.062)*** 
   Graduate 0.267 0.278 0.273 0.278 0.274 0.281 
 (0.048)*** (0.048)*** (0.048)*** (0.048)*** (0.048)*** (0.048)*** 
Female -0.244 -0.248 -0.237 -0.248 -0.234 -0.245 
 (0.041)*** (0.040)*** (0.041)*** (0.040)*** (0.041)*** (0.040)*** 
Household children       
   One -0.159 -0.184 -0.145 -0.182 -0.142 -0.176 
 (0.065)* (0.065)** (0.065)* (0.065)** (0.065)* (0.065)** 
   Two or more -0.302 -0.361 -0.288 -0.358 -0.269 -0.348 
 (0.060)*** (0.060)*** (0.060)*** (0.060)*** (0.060)*** (0.060)*** 
Household income       
   $24,999 and under -0.177 -0.191 -0.170 -0.191 -0.167 -0.190 
 (0.074)* (0.073)** (0.074)* (0.073)** (0.074)* (0.073)** 
   $25,000 to $49,999 -0.233 -0.254 -0.230 -0.254 -0.227 -0.251 
 (0.063)*** (0.063)*** (0.063)*** (0.063)*** (0.063)*** (0.063)*** 
   $75,000 to $99,999 0.148 0.151 0.149 0.151 0.151 0.152 
 (0.061)* (0.061)* (0.061)* (0.061)* (0.062)* (0.061)* 
   $100,000 and above 0.148 0.158 0.146 0.158 0.135 0.156 
 (0.060)* (0.059)** (0.060)* (0.059)** (0.060)* (0.059)** 
Household vehicles -0.685 -0.711 -0.682 -0.710 -0.670 -0.708 
 (0.028)*** (0.028)*** (0.028)*** (0.028)*** (0.028)*** (0.028)*** 
Trip distance (feet) -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 
 (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
Land use mix 
construct 

0.990  1.277  1.609  

 (0.120)***  (0.137)***  (0.148)***  
Land use entropy  -0.058  0.022  0.258 
  (0.126)  (0.137)  0.140 

Model Statistics       

   Adjusted McFadden 
R2 

0.327 0.324 0.327 0.324 0.329 
0.324 

   Nagelkerke R2 0.423 0.419 0.424 0.419 0.425 0.419 

Note: One star (*) indicates p < 0.05, two stars (**) indicates p < 0.01, and three stars (***) indicates p < 
0.001. 

 

In all, the land use mix construct had a significant and positive association with 

the decision to walk for all travel when measured at a one-quarter (Model 1A), one-half 

(Model 2A), and one mile (Model 3A) grid cell incorporating the trip origin. The overall 

fit of these models was similar, with the likelihood ratio test of the one-mile grid model 
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(χ^2(1) = 125.79, p<0.001) revealing the greatest improvement in goodness of fit over 

the reduced model. An increase in land use mix measured at this one-mile scale was 

positively associated with pedestrian travel, with a one standard deviation increase in 

the mean land use mix score translating to a fivefold increase in the odds of walking (B = 

1.609, SE = 0.148, p<0.001, odds ratio [OR] = 5.00, confidence interval [CI] = 3.75 – 6.69). 

Although the magnitude of this link declined as the scale of measurement decreased, a 

one standard deviation increase in land use mixing within a quarter-mile of the origin 

resulted in a person being over two times as likely to walk (B = 0.990, SE = 0.120, 

p<0.001, OR = 2.69, CI = 2.13 – 3.40). Accordingly, travelers originating from a landscape 

with a heightened complexity in the composition and configuration of local land uses 

are more likely to walk than individuals traveling from a less mixed landscape. 

In contrast, while past studies have concluded that an increase in the evenness 

of land use types has a strong positive connection to pedestrian activity (see Brownson, 

et al., 2009), study findings show otherwise. The addition of a land use entropy 

measure, operationalized at any of three scales incorporating the trip origin, to the 

reduced specification produced no significant contribution to the modeled decision to 

walk. In fact, land use diversity measured at the most localized neighborhood scale 

(Model 1B) had a counterintuitive, but non-significant, association with the likelihood to 

walk. Increasing the geographic extent corrected this theoretical mismatch; however, an 

increased land use entropy at a one-mile landscape (Model 3B) had only a marginally 

significant relationship with an individual’s likelihood to walk (B = 0.258, SE = 0.140, p = 
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0.066). In general, travelers originating from a landscape characterized by an equal 

balance of nearby land uses were no more likely to walk than those travelers departing 

from a spatially unbalanced landscape. 

 

3.6.2 Walk trip frequency 

Additional pattern complexity at the home location is theorized to shorten the 

distance to out-of-home activity locations and increase the ability for residents to walk 

more frequently for activity fulfillment. However, walkable neighborhoods also tend to 

exemplify higher activity densities and connected street networks (Saelens, et al., 2003). 

Thus, these built environment features, which often act in concert with land use mix, 

must be controlled for when analyzing this transportation-land use connection. Table 9 

presents the estimates of three negative binomial models examining the impact of the 

construct, operationalized at three spatial scales, on home-based walk trip frequency. 

 

Table 9: Negative Binomial Model Estimation Results of Individual-Level Home-Based Trip Counts (N = 
13,386) 

 One-Quarter Mile Grid One-Half Mile Grid One Mile Grid 

 Model 4 Model 5 Model 6 

 B SE B SE B SE 

Intercept  -3.083 0.212*** -3.586 0.273*** -4.419 0.359*** 
Age       
   18 to 34 years 0.203 0.106 0.181 0.106 0.174 0.105 
   35 to 44 years 0.043 0.107 0.040 0.107 0.045 0.107 
   55 to 64 years -0.064 0.098 -0.075 0.098 -0.077 0.098 
   65 years and older 0.031 0.096 0.037 0.096 0.045 0.096 
Education       
   High school or less -0.228 0.097* -0.230 0.097* -0.195 0.097* 
   Some college -0.288 0.095** -0.301 0.095** -0.276 0.095** 
   Graduate 0.128 0.076 0.102 0.076 0.098 0.076 
Female 0.102 0.062 0.098 0.062 0.104 0.062 
Household children       
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   One 0.338 0.099*** 0.360 0.099*** 0.363 0.098*** 
   Two or more 0.614 0.096*** 0.620 0.093*** 0.645 0.093*** 
Household income       
   $24,999 and under 0.082 0.108 0.082 0.109 0.113 0.108 
   $25,000 to $49,999 -0.131 0.095 -0.126 0.095 -0.124 0.094 
   $75,000 to $99,999 -0.024 0.096 -0.032 0.096 -0.042 0.096 
   $100,000 and above -0.139 0.096 -0.132 0.096 -0.155 0-096 
Household vehicles -0.452 0.045*** -0.447 0.045*** -0.437 0.045*** 
Population density 0.008 0.004 0.005 0.006 -0.010 0.011 
Employment density 0.003 0.002 0.002 0.002 0.013 0.004*** 
City block centroid 0.064 0.006*** 0.016 0.002*** 0.003 0.001** 
Connected node ratio 0.582 0.212** 1.174 0.324*** 2.652 0.476*** 
Land use mix construct 0.975 0.209*** 1.101 0.217*** 0.803 0.223*** 

Model Statistics       

   Adjusted McFadden 
R2 0.164 0.163 0.164 

   Nagelkerke R2 0.202 0.201 0.202 

Note: A star (*) indicates p < 0.05, two stars (**) indicates p < 0.01, and three stars (***) indicates p < 
0.001. 

 

In general, individuals residing in neighborhoods with a complex land use pattern 

and traditional street design conducted more home-based daily walk trips than their 

counterparts. In terms of street design, an increase in the ratio of three- and four-way 

intersections to all nodes as well as the number of city blocks in a grid cell significantly 

predicted greater walk trip frequency. Similarly, increased land use mixing had a strong 

impact on the number of home-based trips. This connection was strongest when the 

mix construct was operationalized at a one-half mile grid cell (Model 5), where a one 

standard deviation increase in the land use mix near a residence contributed to over 

one additional home-based walk trip (B = 1.101, SE = 0.217, p < 0.001). Surprisingly, 

increased population density was not significantly predictive of more walk trips; while, 

increased employment density only predicted increased walk frequency when measured 

at a one-mile grid (Model 6). 
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3.7 Limitations 

Future extensions of this study should address its limitations. A full structural 

equation framework would allow retention of the latent construct in the measurement 

model and offer a more complete behavioral depiction of the transportation-land use 

connection. Adoption of a CFA measurement strategy aided the creation of a 

multifaceted land use mix construct with composition and configuration indicators; 

however, the value of a single measure of each pattern aspect warrants further 

investigation. The specification of separate configuration and composition measures, 

while likely to be interrelated, may produce different statistical associations with the 

tested behaviors since one aspect may be a stronger determinant of walking than the 

other. Also, while the ARC composition measure is a novel way to provide theoretical 

support for quantifying land use balance, other possibilities for relating functional 

complementarity to travel behavior remain. 

Moreover, the inherent relationship between spatial scale choice and built 

environment measurement merits closer attention. In this study, each indicator was 

operationalized at three grid cell sizes to offer insight into the sensitivity of scale choice 

on land use mix measurement. CFA results support construct stability across multiple 

spatial scales; yet, further work is needed to examine the impact of capturing land use 

mix with areal or network buffers. Finally, the validity of this measure should be studied 

in other contexts to identify its transferability to settings with weaker growth 

management policies. 
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3.8 Conclusions 

Planning research has long pointed to the transportation benefits of land use 

mixing; however, this link has been commonly analyzed using insufficient measures. This 

study introduces a land use mix measurement of the composition and configuration of 

local land use types and demonstrates the construct’s link to pedestrian travel. Planning 

literature has portrayed land use mix as an environmental phenomenon describing the 

access to diverse activity locations, intensity of these opportunities, and spatial 

integration of those land use types affiliated with these activities. Accordingly, the 

findings suggest that complexity in this spatial construct is best expressed as a set of 

indicators portraying these multiple aspects. 

Study contributions are both conceptual and methodological. Presenting a mix 

indicator based on the activity-related complementarity of land use types may help 

redirect how ideal compositional balance is measured. By evaluating the area-based 

balance of all land use types, entropy indices offer limited guidance for directing smart 

growth policies. This application of a land use mix indicator based on the observed 

compatibility of activity-related travel may better direct policies intended to produce 

greater transportation efficiencies by closely locating synergistic land uses. The 

introduced construct also reflects the spatial heterogeneity of land use types by 

accounting for the overall maximum patch size and intermixing of dissimilar landscape 

patches. By not explicitly measuring configuration, commonly adopted pattern 

measures (e.g., entropy index) are insensitive to any spatial integration. Attention to 



88 
 

configuration, while nascent, may provide planners further understanding into the 

development patterns that best achieve land use efficiencies. The use of a CFA modeling 

framework enabled the construction of an activity-related mix measure that accounts 

for both composition and configuration. 

If adopted by planning researchers and practitioners, a refined measure of land 

use mix incorporating these unique theoretical components of landscape pattern may 

also reveal richer insight into the influence of local land use mixing on pedestrian trip-

making. In this study, the proposed latent construct had a stronger association with 

walk mode choice than the atheoretical entropy index. Additionally, the construct was 

significantly linked to the frequency of home-based walk trips when tested in a 

behavioral model controlling for other features of the traveler’s home built 

environment. Of particular interest, population and employment density had no 

significant impact at the more localized scales when controlling for the mix construct as 

a co-determinant of walking. Such findings may shift future land development 

discussions away from contentious debates on neighborhood densification and toward a 

dialogue of how development may be spatially configured to promote local accessibility 

and physical activity. Overall, the authors believe this work provides valuable insight 

into the measurement of land use mix as a multifaceted construct with clear positive 

connections to pedestrian travel. 
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Chapter 4: A Pathway Linking Smart Growth Neighborhood to Home-Based Pedestrian 

Travel 

 

4.1 Introduction 

Urban planners and transportation experts have pointed to smart growth 

development as a response to a pressing need for improving transportation-related 

physical activity levels and environmental quality (Saelens, et al., 2003). The prevailing 

rationale is that land development patterns and urban design, which are impacted by 

transportation policies and investments, are inextricably linked to travel behaviors and 

outcomes (Handy, 2005). This connection underscores a desirability for smart growth 

communities, which bring residents closer to out-of-home activity destinations and 

improve their feasibility of reaching those locations by walking (Handy, et al., 2002). 

Accordingly, smart growth and other integrated transportation-land use investment 

strategies must continue to be pursued in order to develop activity friendly, walkable 

environments that support increased physical activity (Frank & Kavage, 2009). 

Smart growth neighborhoods exhibit compact development patterns with higher 

densities, land use diversity, and a pedestrian-friendly design aimed at minimizing 

automobile use for short trips (Downs, 2005). The formation of these sustainable 

communities was a policy goal in the 2014-2018 strategic plan of the US Environmental 

Protection Agency and previously envisioned within a suite of livability principles guiding 

its 2009 Interagency Partnership for Sustainable Communities with the US Departments 
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of Transportation and Housing and Urban Development. However, questions regarding 

the identification of a set of built environment indicators and creation of commonly 

accepted standards for what constitutes a walkable, smart growth neighborhood largely 

continue to be unanswered (Clifton, et al., 2007). An unlikely circumstance that exists 

despite a popularity in transportation-land use research rising from the potential to 

moderate travel behaviors and patterns by altering the physical environment in 

accordance with smart growth policy (Ewing & Cervero, 2010). 

This policy discussion remains because past active travel behavior studies have 

adopted imperfect measures to reflect the interrelated dimensions characterizing the 

built environment (Handy, et al., 2002). Although recent studies have used more 

sophisticated statistical methods to estimate the effects of more environmental factors 

(Ewing & Cervero, 2010), these studies tend to depict the built environment as a series 

of isolated measures rather than a comprehensive collection of synergistic indicators 

reflecting its multidimensionality. Factor analysis has gained approval as one method to 

derive generalized dimensions of neighborhood character from isolated measures that 

may display conceptual or empirical redundancy (Song & Knaap, 2007). The use of this 

method to recognize the built environment as a multidimensional concept can offer 

insight into measurement selection and the cumulative impact of altering interrelated 

land development pattern, urban design, and transportation system factors comprising 

this higher-order construct on travel behavior. 
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The impact of residing in a smart growth neighborhood on walking may also not 

be fully realized because the indirect effects of the various explanatory factors 

influencing one another and travel behavior have been inadequately examined (Van 

Acker, et al., 2007). A host of individual, societal, and contextual factors is hypothesized 

to predict walking for both transportation and recreational purposes (Pikora, et al., 

2003). However, by not accounting for the indirect effects of these characteristics, 

which may diminish or confound the total effect of the built environment on pedestrian 

travel, studies may offer an incomplete picture of this transportation-land use 

connection. In all, the precise nature of residing in a smart growth community on travel 

behavior cannot be entirely understood without a conceptual and methodological 

framework specifying the many pathways to and determinants of travel (Bagley & 

Mokhtarian, 2002). 

 The objectives of this study are twofold. First, this study introduces a 

multidimensional concept of the physical environment reflecting several heralded 

tenets of smart growth policy. Second, this paper proposes a framework linking this 

second-order environmental construct and sociodemographic aspects to pedestrian 

travel and tests these complex interactions using structural equation modeling (SEM). 

By doing so, this paper offers a novel and robust measure of what constitutes a smart 

growth neighborhood and extended understanding of how this multidimensional 

concept influences household-level pedestrian travel. 
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4.2 Literature Review 

Of the existing studies linking a built environment construct to travel behavior 

using SEM techniques, the measurement of identified indicators has been either 

objective, perceived, or some combination (Ma, et al., 2014). Further, once a construct 

has been confirmed, a number of travel outcomes and behaviors have been explored by 

using pathways illustrated in a variety of proposed conceptual frameworks. The 

following subsections review the SEM evidence base linking built environment 

constructs to travel and recommend a conceptual framework to guide this study’s 

analysis of household-level pedestrian travel. 

 

4.2.1 Structural equation models of the transportation-land use connection 

While most transportation-land use studies focus on objective built environment 

measurement, several SEM applications have identified built environment constructs 

based on individual perceptions. These studies have explored themes of neighborhood 

accessibility (Cao, et al., 2007, Cao, 2016), arrangement and aesthetic (Aditjandra, et al., 

2012; Aditjandra & Mulley, 2016; Banerjee & Hine, 2016) and sense of place (Deutsch, 

et al., 2013) to recognize their influence on automobile ownership and travel mode 

choice. Other studies have identified residential environments as single constructs 

containing both perceived and objective indicators (Bagley & Mokhtarian, 2002) or as 

distinct constructs reflecting an individual’s objective and perceived residential 

environment (Ma, et al., 2014). 
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 In a San Francisco Bay Area study, Bagley and Mokhtarian (2002) identified 

separate constructs for traditional and suburban environments to estimate the impact 

of neighborhood types, lifestyles, and attitudes on miles traveled via automobile, public 

transit, and active transport. The objectively measured indicators of the traditional 

environment included population density, grid-like street design, and speed limit of the 

road (Bagley, et al., 2002). In a Portland-based study examining the effect of objective 

and perceived environments on monthly cycling rates, Ma et al. (2014) described an 

objective environment with built environment indicators including the number of 

business establishments, percent of connected streets, and miles of bike infrastructure 

near an individual’s home. Consequently, the construct better represented an objective 

bicycling environment rather than a residential environment; underscoring the 

importance in selecting measurement variables that reflect a residence’s overall built 

environment (de Abreau e Silva, et al., 2012b). 

 In the European context, several studies have examined the impact of land 

development patterns on travel behavior. Van Acker et al. (2007) examined this path 

with a land use factor reflecting the distance to public transit and two categorical 

indicators of the residential environment in Flanders. Their results indicated land use 

had a positive direct effect on a travel behavior construct reflecting the total distance, 

duration, and number of trips originating from the home location. A second study by 

Van Acker and Witlox (2010) examined the mediating effect of auto ownership on the 

path connecting the built environment to automobile use. While this latter study had 
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additional variables related to land development and patterns, the SEM application does 

not describe the residential environment as a multidimensional construct. Eboli et al. 

(2012) explored the land use-travel behavior link with latent factors for each, in 

southern Italy. Land use was indicated by only two objective measures: housing unit 

surface area and residential environment. 

 Using a more comprehensive set of built environment indicators, a series of 

papers addressed the impact of land patterns on short- and long-term travel behavior 

decisions in Lisbon (de Abreu e Silva, et al., 2006), Seattle (de Abreu e Silva & Goulias, 

2009), Montreal (de Abreu e Silva, et al., 2012b), and Los Angeles (de Abreu e Silva, et 

al., 2012a). In the first paper, a traditional urban land use factor largely driven by 

population density and public transit supply at the residence predicted an increase in 

distance traveled and trip frequency for nonmotorized travel modes. The authors then 

identified a residential environment construct with Montreal data reflective of land use 

entropy and automobile accessibility as well as a pair of home- and job-based constructs 

described as a central, denser, and accessible area. In the American context, this 

multidimensional construct describing a dense and centrally-located residential 

environment indicated by population, building, and intersection density as well as 

distance to the central business district was identified in Seattle. Finally, the Los Angeles 

study examined the link to trip scheduling from a residential land use construct with 

indicators representing the activity participation opportunity. 



95 
 

 Overall, only a handful of studies have exclusively represented the built 

environment as a set of objectively measured indicators describing a multidimensional 

latent construct. In contrary to perceived environmental measures, a construct 

composed of objective measurements is not subjected to reporting bias that may inflate 

the effect of residing in a smart growth community on pedestrian travel (Aditjandra & 

Mulley, 2016). Further, those SEM studies detailing a construct with objective indicators 

have tended to examine its influence on auto-related outcomes rather than pedestrian 

travel patterns and behaviors. While smart growth communities provide an alternative 

to auto-oriented neighborhoods, policies related to improving community livability via 

increased transportation-related physical activity levels are provided limited insight by 

past studies focused solely on auto travel (Handy, 2005). 

 

4.2.2 Conceptual framework 

A framework describing the built environment and transportation connection is 

provided in Figure 4. The built environment is comprised of land development patterns, 

urban design, and transportation system features (Frank & Engelke, 2001; Handy, 2005). 

Land development patterns describe the land use mix (distance-based accessibility, 

intensity, and pattern) as well as the intensity or density of features in a defined spatial 

extent, while urban design features detail the arrangement and aesthetics of the built 

environment (Handy, et al., 2002). The transportation system refers to both the physical 

infrastructure available to an individual and the performance or quality of any provision. 
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Figure 4: Proposed Conceptual Framework Linking the Built Environment to Travel Behaviors and Patterns 

 

In the proposed framework, the built environment features are determined by 

sociodemographic attributes of an individual, household, and his/her neighborhood 

(Van Acker, et al., 2007), which in turn have a direct effect on travel outcomes such as 

walk mode choice (Saelens, et al., 2003). Sociodemographic and economic features may 

include, but are not limited to, a person’s age, income, education, gender, or access to 

private transport options (Ma, et al., 2014) in addition to the sociodemographic and 

economic composition of his/her household and neighbors. Contextual factors such as 

government policy and the natural environment also impact travel behaviors and 

patterns, but are considered to be external to the built environment and 

sociodemographic influences (Panter, et al., 2008).  

 

4.3 Data and Methods 

This section describes a methodology for adopting this framework to (a) provide 

a multidimensional construct reflecting three distinct built environment facets and (b) 



97 
 

estimate the impact of a second-order construct representing a smart growth 

neighborhood on household-level, home-based pedestrian travel. 

 

4.3.1 Study area and sample 

This study examined the travel behaviors of residents in the three Oregon 

counties spanning the Portland metro region: Multnomah, Clackamas, and Washington. 

The decision to broaden the study area beyond the region’s state mandated growth 

boundary enabled measurement of the transportation-land use connection in 

neighborhoods both impacted and not by the enactment of regional growth controls. 

Respondents of the Oregon Household Activity Survey (OHAS), a statewide 

transportation survey detailing weekday activity and travel patterns of randomly 

sampled households, completed a one-day travel diary for themselves and each 

member of their household. Survey participants also reported information about their 

activity locations, trip purposes, trip distances, and travel mode choices as well as 

sociodemographic and economic characteristics of each household member. Table 10 

summarizes the descriptive statistics for the study sample of 4,416 households surveyed 

in the three-county study area during 2011. 

 

Table 10: Household-Level Descriptive Statistics of Study Sample 

Indicator Name n % Mean 
St. 
Dev. Min Max 

Sociodemographic and Economic Characteristics  

Number of children under 6 years --- --- 0.14 0.45 0.00 4.00 
Number of children 6 years or older --- --- 0.32 0.71 0.00 5.00 
Number of adults --- --- 1.95 0.79 1.00 7.00 
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Non-related household 129 0.03 --- --- 0.00 1.00 
Annual income: Under $25,000 505 0.12 --- --- 0.00 1.00 
Annual income: $25,000 to $49,999 823 0.20 --- --- 0.00 1.00 
Annual income: $50,000 to $99,999 1,675 0.41 --- --- 0.00 1.00 
Annual income: $100,000 or more 1,080 0.26 --- --- 0.00 1.00 
Household workers: 0 864 0.20 --- --- 0.00 1.00 
Household workers: 1 1,800 0.41 --- --- 0.00 1.00 
Household workers: 2 1,557 0.35 --- --- 0.00 1.00 
Household workers: 3 or more 195 0.04 --- --- 0.00 1.00 
Oldest adult: Under 30 years 127 0.03 --- --- 0.00 1.00 
Oldest adult: 30 to 44 years 892 0.21 --- --- 0.00 1.00 
Oldest adult: 45 to 64 years 2,198 0.51 --- --- 0.00 1.00 
Oldest adult: 65 years or more 1,131 0.26 --- --- 0.00 1.00 
Education: High school diploma or less 358 0.08 --- --- 0.00 1.00 
Education: Associate’s degree or credits 982 0.22 --- --- 0.00 1.00 
Education: Bachelor’s degree 1,434 0.33 --- --- 0.00 1.00 
Education: Graduate degree 1,635 0.37 --- --- 0.00 1.00 

Transportation Characteristics 

Vehicles per licensed driver --- --- 1.05 0.56 0.00 8.00 
Transit passes per adult --- --- 0.16 0.31 0.00 1.00 
Bikes per person 6 years or older --- --- 0.55 0.71 0.00 13.00 

Home-based Travel Behaviors and Patterns 

Average trip distance (miles) --- --- 4.33 3.87 0.01 29.63 
Walked for transportation purposes 541 0.12 --- --- 0.00 1.00 
Walked for discretionary purposes  232 0.05 --- --- 0.00 1.00 

Notes: Dashes (---) indicate frequencies (n) were not provided for continuous measures. A star (*) indicates 
a binary measure of the household-level decision to make 0 vs. ≥1 walk trips. 

 

4.3.2 Built environment measurement 

A one-mile areal buffer centered on the home location, which approximates the 

distance that an individual may travel on a 20-minute walk originating from his/her 

home, was selected to delineate the residential neighborhood of sampled OHAS 

respondents. To understand the multidimensionality of the built environment measured 

at the home location and its connection to household-level pedestrian travel, an 

extensive set of 62 built environment indicators related to land development patterns, 

urban design features, and transportation infrastructure was assessed in both urban and 

non-urban contexts. Table 11 details this list of built environment measures from 
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various regional and national datasets utilized in this study to identify a walkable, smart 

growth neighborhood. 

 

Table 11: Descriptive Statistics of Built Environment Indicators at Home Location 

Measurement Name Mean Median St. Dev. Min Max 

Land use mix: composition measures 

Land use percent: residential a 0.46 0.50 0.17 0.00 0.80 
Land use percent: retail a 0.07 0.06 0.06 0.00 0.31 
Land use percent: manufacturing a 0.04 0.01 0.05 0.00 0.37 
Land use percent: utilities a 0.01 0.00 0.02 0.00 0.33 
Land use percent: entertainment a 0.04 0.02 0.05 0.00 0.77 
Land use percent: education a 0.06 0.06 0.05 0.00 0.29 
Land use percent: construction a 0.00 0.00 0.00 0.00 0.05 
Land use percent: extraction a 0.00 0.00 0.01 0.00 0.11 
Land use percent: agricultural a 0.11 0.01 0.23 0.00 0.99 
Activity-related complementarity (9 types) a,b 0.79 0.83 0.17 0.02 0.97 
Activity-related complementarity (5 types) a,b 0.78 0.82 0.17 0.02 0.98 
Land use entropy index (9 types) a 0.44 0.44 0.12 0.00 0.75 
Land use entropy index (5 types) a 0.62 0.63 0.15 0.01 0.96 
Land use balance (9 types) a 0.37 0.37 0.12 0.01 0.73 
Land use balance (5 types) a 0.54 0.53 0.15 0.07 0.94 
Employment entropy c 0.78 0.83 0.16 0.00 1.00 
Employment-population balance c,d 0.47 0.28 0.57 0.00 5.05 
Retail employment-population balance c,d 0.05 0.03 0.06 0.00 0.61 
Land use patches: residential a 0.19 0.14 0.13 0.00 0.64 
Land use patches: retail a 0.10 0.07 0.08 0.00 0.39 
Land use patches: manufacturing a 0.02 0.01 0.02 0.00 0.17 
Land use patches: utilities a 0.01 0.01 0.02 0.00 0.29 
Land use patches: entertainment a 0.01 0.01 0.02 0.00 0.10 
Land use patches: education a 0.05 0.04 0.05 0.00 0.26 
Land use patches: construction a 0.00 0.00 0.00 0.00 0.03 
Land use patches: extraction a 0.00 0.00 0.00 0.00 0.09 
Land use patches: agricultural a 0.01 0.00 0.02 0.00 0.21 

Land use mix: configuration measures 

Maximum patch size: residential a 0.12 0.08 0.12 0.00 0.76 
Maximum patch size: retail a 0.02 0.01 0.02 0.00 0.16 
Maximum patch size: manufacturing a 0.02 0.01 0.02 0.00 0.22 
Maximum patch size: utilities a 0.01 0.00 0.02 0.00 0.27 
Maximum patch size: entertainment a 0.02 0.01 0.04 0.00 0.51 
Maximum patch size: education a 0.02 0.01 0.02 0.00 0.27 
Maximum patch size: construction a 0.00 0.00 0.00 0.00 0.05 
Maximum patch size: extraction a 0.00 0.00 0.01 0.00 0.10 
Maximum patch size: agricultural a 0.08 0.00 0.19 0.00 0.99 
Maximum patch size a 0.22 0.17 0.18 0.03 0.99 
Contagion index a 0.57 0.56 0.09 0.42 0.98 

Density measures 
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Population d 15,075 14,371 7,655 48.26 38,944 
Housing units d 6,783 6,189 4,298 8.32 27,237 
Employment c 7,881 4,188 14,230 0.00 115,360 
Office jobs c 1,468 355 4,546 0.00 39,168 
Retail jobs c 808 473 1,070 0.00 6,622 
Industrial jobs c 1,354 597 1,901 0.00 12,487 
Service jobs c 3,198 1,599 5,433 0.00 40,272 
Entertainment jobs c 922 434 1,907 0.00 14,735 
Total activity (population and employment) c,d 22,956 19,998 19,037 56.36 143,129 

Urban design and transportation system measures 

Census blocks d 300 214 224 1.00 1,085 
Street blocks e 243 146 216 0.00 918 
Connected node ratio e 0.74 0.71 0.12 0.13 1.00 
Alpha index e 0.23 0.19 0.12 -1.00 3.00 
Beta index e 1.46 1.38 0.21 1.06 2.02 
Gamma index e 0.49 0.46 0.08 0.37 3.00 
Intersections e 432 391 228 1.00 1,065 
Cul-de-sacs e 126 117 68.59 0.00 330 
Primary roads (miles) e 1.37 0.00 1.97 0.00 9.17 
Secondary roads (miles) e 1.59 1.65 1.47 0.00 8.05 
Local roads (miles) e 53.00 51.18 21.37 0.67 101 
Percent of primary roads e 0.02 0.00 0.03 0.00 0.31 
Percent of secondary roads e 0.03 0.02 0.04 0.00 0.75 
Percent of local roads e 0.93 0.94 0.06 0.25 1.00 
Sidewalk coverage e 0.45 0.46 0.27 0.00 0.98 

Note: Land use type taxonomy adopted from American Planning Association’s Land-Based Classification 
Standards. Superscripts (n) indicate the measurement’s data source: (a) 2011 Regional Land Information 
System, (b) 2011 Oregon Household Activity Survey, (c) 2014 Longitudinal Employer-Household Dynamic, (d) 
2010 US Census, and (e) 2010 US Census Topologically Integrated Geographic Encoding and Referencing. 

 

Land use mix embodies a subset of land development pattern measures 

describing both the composition and configuration of land use types in a landscape 

(Gehrke & Clifton, 2016). Portland Metro’s Regional Land Information System provided 

parcel-level data to calculate composition measures characterizing the percent of land 

area or patches of each land use type in a landscape and configuration measures 

explicitly accounting for the spatial arrangement, shape, and dissimilarity of the 

landscape patches (Li & Reynolds, 1994; Turner, 2005). Other measures considered the 

proportion of all or a reduced set of five (residential, retail, entertainment, education, 
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and other) land use types, including the land use entropy index (Cervero, 1989) and 

measures of land use balance (Bhat & Gossen, 2004) and activity-related 

complementarity (ARC). The ARC measure represents the localized balance of land use 

types based on a derived demand for travel rather than their spatial equilibrium. 

 

𝐴𝑅𝐶 = 1 − ∑ [𝑃𝑖 ∗
|𝑃𝑖−𝐹𝑖|

1−𝐹𝑖
]𝑛

𝑖=1         (3) 

 

In Equation 3, 𝑛 is the number of land use types, 𝑃𝑖 is the proportion of area 

dedicated to land use type 𝑖, and 𝐹𝑖 is an activity factor associated with each land use 

type in a neighborhood. These activity factors measure the percentage of trip ends 

terminating at one of nine land use categories: 𝐹𝑅𝐸𝑆 = 0.42, 𝐹𝑅𝐸𝑇 = 0.32, 𝐹𝐼𝑁𝐷 = 0.03, 

𝐹𝑈𝑇𝐼 = 0.01, 𝐹𝐸𝑁𝑇 = 0.02, 𝐹𝐸𝐷𝑈 = 0.16, 𝐹𝐶𝑂𝑁 = 0.01, 𝐹𝐸𝑋𝑇 = 0.01, and 𝐹𝐴𝐺𝑅 = 0.04. 

For instance, in the study sample, 42-percent of all trips concluded at an activity location 

within a residential land use type. In the end, a score of zero indicates a neighborhood 

dominated by a single land use type; whereas, a score of one indicates a neighborhood 

where the spatial allocation of all land use types perfectly matches the observed 

attraction for activities. 

The remaining composition measures in Table 11 describe the jobs-housing 

balance of a residential environment and its employment entropy, as measured by the 

diversity of office, retail, industrial, service, and entertainment jobs. In turn, the 

configuration of a landscape was measured by either computing the maximum patch 
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size for a particular land use or a patch disaggregation and interspersion measure 

specific to all land use types, the contagion index (Li & Reynolds, 1994). The maximum 

patch size was calculated by determining the largest area of adjoining parcels for a 

chosen land use and normalizing this calculation by the overall landscape area. The 

contagion index is a configuration measure differentiating landscapes with a small 

number of contiguous patches from areas with an intermixing of dissimilar patch types, 

which aptly characterizes a neighborhood with a high level of land use integration 

(Clifton, et al., 2008). 

 

𝐶𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = 1 +
∑ ∑ [(𝑃𝑖𝑗) ln(𝑃𝑖𝑗)]𝑛

𝑗
𝑛
𝑖

2 ln(𝑛)
       (4) 

 

The numerator in Equation 4 is the entropy index adopted from information 

sciences (Shannon & Weaver, 1949), where 𝑃𝑖𝑗 is the probability of adjacent 66-foot grid 

cells in a landscape belonging to patch type 𝑖 and 𝑗. As the cells in a landscape become 

increasingly fragmented, the contagion index score nears a value of zero. Although, 

calculation of the contagion index is complicated by the construction of a spatial 

dissimilarity matrix, this metric provides a unique depiction of the neighboring land use 

contrasts within a landscape (Li & Reynolds, 1994). 

Data from the US Census and Longitudinal Employer-Household Dynamics 

allowed construction of the remaining density, urban design, and transportation system 

measures. Given the standardization in neighborhood unit of analysis, the nine density 
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measures are simply continuous variables denoting the number of persons, housing 

units, or jobs surrounding a home location. Urban design features in Table 11 include 

common transportation planning measures such as the number of blocks, intersections, 

and cul-de-sacs as well as three network connectivity indices (Song, et al., 2013). Finally, 

the seven transportation infrastructure measures describe the total length and percent 

of primary, secondary, and local roads in addition to the sidewalk coverage along these 

facilities. 

A distillation process followed to reduce these built environment measures to a 

parsimonious set of indicators. The first step was to examine a correlation matrix and 

eliminate measures that were highly associated and pointed toward concept 

redundancy. A subsequent step was to perform an exploratory factor analysis (EFA) to 

identify an exclusive yet comprehensive collection of interrelated measures that reflect 

the land development pattern, urban design, and transportation system found within a 

residential environment. The EFA technique helped generate a theoretic understanding 

of the internal structure of how observed built environment measures may improve the 

construct measurement of a smart growth neighborhood. The assumption being that 

factors shaped by this exploratory technique may also be useful as operational 

descriptions of the three built environment dimensions. 

The EFA was performed in sequential steps centered on three decisions related 

to selection of a factor model approach, extraction scheme, and rotation method (Ford, 

et al., 1986). Principal axis factoring was used since this method has generally 
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outperformed other methods in recovering factors with low loadings, providing 

solutions with stable loadings, and isolating correlated factors (de Winter & Dodou, 

2012). The inspection of eigenvalues associated with each resulting factor and their 

scree plot display guided the factor extraction (Hayton, et al., 2004). Finally, a promax 

rotation, which allows for correlation between the extracted factors, was chosen as a 

rotation method leading to the final three-factor model described in Table 12. 

 

Table 12: Exploratory Factor Analysis of Built Environment Characteristics 

Built Environment Characteristics 

Factor 1: 
Land use 
dominance 

Factor 2: 
Employment 
concentration 

Factor 3: 
Pedestrian-
oriented 
design 

Land use activity-related complementarity (9 types) -0.96 0.00 -0.01 
Employment entropy -0.52 0.05 0.05 
Employment-population balance -0.03 0.91 -0.07 
Land use patches: retail 0.10 0.15 0.92 
Maximum patch size: agricultural 0.90 0.04 0.03 
Maximum patch size 0.97 0.12 0.07 
Contagion index 0.86 -0.19 -0.01 
Office jobs 0.07 0.93 -0.02 
Retail jobs -0.06 0.71 0.20 
Connected node ratio 0.04 -0.06 0.95 
Sidewalk coverage -0.19 -0.16 0.69 

Eigenvalue 5.51 2.20 1.23 
Percent of variance explained 50.09 19.96 11.22 

Notes: Factor loadings > 0.4 are in bold. 

 

The results of this initial diagnostic step produced three built environment 

factors based on a set of smart growth indicators. Factor 1 comprises two composition 

and three configuration indicators of land use mix. Taken together, this land use 

dominance factor reflects a residential environment with a limited complementarity in 

land use types, imbalance of employment opportunities, and high patch aggregation or 
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isolation, independent of the land uses in a neighborhood. Three land development 

pattern indicators were also found to strongly reflect Factor 2. The ratio of total 

employment-to-persons is a commonly adopted proxy measure for land use mixing; 

whereas, the number of office- and retail-related jobs within a one-mile radius around a 

residence also contributed to this employment concentration factor. The final factor 

was explained by two urban design and transportation system indicators, connected 

node ratio and sidewalk coverage, as well as a third indicator measuring the number of 

retail land use patches. Overall, the adoption of an EFA framework before estimating 

the structural model permitted an empirically-driven process for understanding the 

interrelationships between a collection of objective indicators, which may be supported 

by a priori theory to reflect potential underlying latent constructs (Brown, 2006). 

 

4.3.3 Structural equation modeling 

Application of an SEM method with latent constructs is a firmly established analytic 

strategy in which a set of specified equations containing measurement models for 

exogenous and endogenous variables are concurrently estimated with a structural 

model estimating the associations or pathways between (Golob, 2003). Using a two-step 

approach, the measurement models positing the relationship of observed variables to a 

latent construct were estimated by confirmatory factor analysis (CFA) before an 

assessment of a structural model with path assignments (Anderson & Gerbing, 1988). 

The application of this strategy offers several advantages over conventional multivariate 
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regression methods, including the ability to: (a) develop latent constructs with multiple 

indicators, (b) correct for measurement error in the observed variables reflecting any 

latent construct, and (c) simultaneously test for both direct and indirect effects as well 

as any bidirectional relationships that exist between multiple variables across different 

paths (Golob, 2003; Van Acker, et al., 2007; Aditjandra, et al., 2012; de Abreu e Silva, et 

al., 2012a). However, while this latter point constitutes a conceptual improvement over 

a single-equation approach, using cross-sectional data in any SEM application still does 

not infer the condition of time precedence needed to establish a causal relationship 

(Cao, et al., 2007).  

 The pathways of greatest interest to this study are the direct and indirect effects 

of the latent construct reflecting a smart growth neighborhood on the household-level 

decision to conduct a walk trip for transportation (mandatory or subsistence) or 

discretionary trip purposes. Although, the use of SEM also allows for the simultaneous 

testing of the direct and total effects of several household-level measures on these two 

travel outcomes as well as the influence of these manifest variables on the smart 

growth neighborhood latent construct. By simultaneously estimating the different 

pathways leading to the two pedestrian travel outcomes, the proposed conceptual 

framework may be empirically tested to help inform policy actions such as the 

formation of walkable, smart growth neighborhoods, which may be adopted to guide an 

increase in home-based pedestrian activity.   
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4.4 Discussion of Results 

Estimation results of the final SEM are presented in Table 13. The model fit 

indices depict a reasonable, but not entirely good, fit to the sampled data (CFI = 0.85, TLI 

= 0.81, RMSEA = 0.08, and SRMR = 0.04). Indicators of the three first-order factors were 

all above an acceptable standardized loading (β ≥ 0.40). Similarly, the standardized 

loadings for each of these latent factors on the second-order smart growth 

neighborhood construct were acceptable. The following discussion is separated based 

on the results of the measurement and structural models. 

 

Table 13: Structural Equation Modeling Results with Unstandardized (B) and Standardized (β) Coefficients 

Parameter Estimates: B SE (B) β p-value 

Measurement Models 

Land use mix     
     Land use activity-related complementarity (9 types) 1.00 --- 0.97 --- 
     Maximum patch size * 0.99 0.02 0.86 0.00 
     Maximum patch size: agricultural * 0.91 0.01 0.87 0.00 
     Contagion index * 0.51 0.00 0.94 0.00 
     Employment entropy 0.51 0.02 0.54 0.00 
Employment concentration     
     Retail employment 1.00 --- 0.83 --- 
     Office employment 0.73 0.03 0.91 0.00 
     Employment-population balance 0.70 0.03 0.87 0.00 
Pedestrian-oriented design     
     Sidewalk coverage 1.00 --- 0.72 --- 
     Connected node ratio 0.55 0.01 0.91 0.00 
     Land use patches: retail 0.39 0.01 0.92 0.00 
Smart growth neighborhood     
     Pedestrian-oriented design 1.00 --- 0.85 --- 
     Land use mix 0.66 0.02 0.63 0.00 
     Employment concentration 0.44 0.03 0.53 0.00 

Structural Models     

Smart growth neighborhood   ~     
     Number of children 6 years or older -0.02 0.00 -0.08 0.00 
     Number of adults -0.04 0.00 -0.19 0.00 
     Annual income: $25,000 to $49,999 0.00 0.01 -0.01 0.69 
     Annual income: $50,000 to $99,999 -0.04 0.01 -0.11 0.00 
     Annual income: $100,000 or more -0.05 0.01 -0.14 0.00 
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     Non-related household 0.04 0.02 0.04 0.01 
     Household workers: 1 0.02 0.01 0.05 0.03 
     Household workers: 2 0.02 0.01 0.06 0.03 
     Household workers: 3 or more 0.03 0.02 0.03 0.10 
     Education: Associate’s degree or credits 0.01 0.01 0.03 0.28 
     Education: Bachelor’s degree 0.04 0.01 0.11 0.00 
     Education: Graduate degree 0.06 0.01 0.17 0.00 
     Vehicles per licensed driver -0.09 0.01 -0.30 0.00 
     Transit passes per adult 0.06 0.01 0.11 0.00 
     Bikes per person 6 years or older 0.03 0.01 0.14 0.00 
Average trip distance   ~     
     Smart growth neighborhood -9.17 0.61 -0.40 0.00 
     Number of children under 6 years -0.51 0.10 -0.06 0.00 
     Number of children 6 years or older -0.96 0.07 -0.18 0.00 
     Number of adults -0.40 0.09 -0.08 0.00 
     Annual income: $25,000 to $49,999 0.28 0.22 0.03 0.20 
     Annual income: $50,000 to $99,999 0.45 0.22 0.06 0.04 
     Annual income: $100,000 or more 0.26 0.24 0.03 0.26 
     Household workers: 1 1.11 0.17 0.14 0.00 
     Household workers: 2 1.40 0.19 0.17 0.00 
     Household workers: 3 or more 1.87 0.32 0.10 0.00 
     Education: Associate’s degree or credits 0.40 0.26 0.04 0.13 
     Education: Bachelor’s degree -0.17 0.25 -0.02 0.49 
     Education: Graduate degree -0.50 0.25 -0.06 0.05 
     Transit passes per adult 1.40 0.20 0.11 0.00 
Walked for transportation purposes   ~     
     Average trip distance -0.01 0.00 -0.10 0.00 
     Smart growth neighborhood 0.44 0.05 0.22 0.00 
     Number of children under 6 years 0.04 0.01 0.05 0.01 
     Number of children 6 years or older 0.07 0.01 0.16 0.00 
     Number of adults 0.04 0.01 0.09 0.00 
     Annual income: $25,000 to $49,999 -0.02 0.02 -0.02 0.31 
     Annual income: $50,000 to $99,999 -0.03 0.02 -0.05 0.11 
     Annual income: $100,000 or more -0.04 0.02 -0.06 0.03 
     Household workers: 1 0.01 0.01 0.01 0.81 
     Household workers: 2 0.01 0.02 0.01 0.84 
     Household workers: 3 or more -0.06 0.03 -0.04 0.04 
     Vehicles per licensed driver -0.03 0.01 -0.05 0.00 
     Bikes per person 6 years or older 0.02 0.01 0.04 0.02 
Walked for discretionary purposes   ~     
     Average trip distance -0.01 0.00 -0.06 0.00 
     Smart growth neighborhood 0.21 0.03 0.16 0.00 
     Number of children 6 years or older 0.02 0.01 0.06 0.00 
     Number of adults 0.02 0.01 0.07 0.00 
     Household workers: 1 -0.02 0.01 -0.03 0.11 
     Household workers: 2 -0.02 0.01 -0.04 0.07 
     Household workers: 3 or more -0.04 0.02 -0.04 0.04 
     Education: Associate’s degree or credits -0.01 0.01 -0.02 0.33 
     Education: Bachelor’s degree 0.02 0.01 0.03 0.19 
     Education: Graduate degree 0.03 0.01 0.05 0.03 
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     Transit passes per adult -0.02 0.01 -0.03 0.04 

Notes: Dashes (---) indicate standard error was not estimated. A star (*) indicates the measure was reverse-
coded. Sample size (n) = 4,035. χ2 (247) = 6,522, p = 0.00. Goodness-of-fit measures: Comparative Fit Index 
(CFI) = 0.853, Tucker-Lewis index (TLI) = 0.812, Root Mean Squared Error of Approximation (RMSEA) = 0.079, 
and Standardized Root Mean Squared Residual (SRMR) = 0.038. 

 

4.4.1 Smart growth neighborhood indicators 

Figure 5 visually displays the measurement models in the estimated SEM. The 

standardized loadings in the final SEM are similar to the estimation results of a second-

order CFA, which produced comparative fit index (CFI) and Tucker-Lewis index (TLI) 

values of 0.85 and 0.81, respectively. Meanwhile, the three first-order latent constructs 

also have the same indicator structure of the final EFA model estimation. All 

measurement models in the final SEM have between three and five built environment 

indicators reflecting any given latent construct. Two first-order constructs represent the 

unique land development pattern aspects of land use mix (α=0.90) and density (α=0.87); 

whereas, two indicators of the remaining first-order construct (α=0.73) reflect a pair of 

urban design and transportation system characteristics. 

The land use mix construct describes a set of complementary indicators of land 

use composition and spatial configuration. A mixed-use residential environment was 

most strongly reflective of a balanced measurement in the ARC of local land use types in 

which the nine land uses were distributed as disparate land use patches. A 

neighborhood receiving a high land use ARC score signifies a home environment where 

land use types are spatially balanced to reflect those activity locations that generate 

passenger travel demand. By reverse coding the configuration index, a positive 
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construct value reflects an environment with smaller, interspersed patches. Similarly, a 

home environment without a single, large homogenous landscape patch or a large patch 

devoted to agricultural land were found to reflect a higher level of land use mixing. A 

high construct value was also reflective of a neighborhood with a diverse set of nearby 

job opportunities. Together, these five indicators revealed a residential environment 

with the compositional and spatial heterogeneity of land uses required to produce 

greater transportation efficiencies through an intermingling of complementary non-

residential land uses. 

A second construct, employment concentration, consisted of two observed 

density measures and a composition measure. The density measures represented the 

number of retail and office jobs within a one-mile buffer surrounding the home location. 

These density indicators signify the benefit of increased access to daily life activities 

related to subsistence (e.g., work, school) or maintenance (e.g., shopping, health care) 

activities. A higher intensity of these out-of-home activities near a residence has a 

conceptual link to an increased feasibility of walking for activity engagement. The third 

indicator of this density-related construct, an increased ratio of jobs-to-persons, also 

signified the positive value of residing in a neighborhood with an increased intensity of 

nearby work-related activity locations. 
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Figure 5: Second-Order Latent Construct Reflecting a Smart Growth Neighborhood 

 

 The third first-order construct reflects elements of each built environment 

dimension including urban design and the transportation system. Specifically, each of 

the three indicators are associated with the provision of a street design conducive to a 

highly walkable residential environment. This construct is reflected by a high percentage 

of four-way intersections, which create a traditional street network design, and a high 

percentage of streets with strong sidewalk coverage. Although listed as a composition 

measure, a positive value for the indicator of retail land use patches denotes the 

importance of a patchier landscape with smaller block sizes to this identified pedestrian-

oriented design construct. 
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A second-order smart growth neighborhood was strongly reflective of a positive 

value in each of these described first-order latent constructs. The factor describing a 

home environment with a walkable and traditional street network design was the 

strongest predictor of a smart growth neighborhood (β=0.85), followed by the land 

development pattern constructs of land use mix (β=0.63) and density (β=0.53). In sum, 

these three first-order constructs indicate a home environment characterized by a 

compact and complex land development pattern with a high intensity of nearby non-

residential activity locations and a pedestrian-oriented street network design. 

  

4.4.2 Path analysis of home-based pedestrian travel 

An examination of the structural model reveals that residing in a smart growth 

neighborhood has a strong positive direct effect on the household-level decision to 

participate in one or more home-based walk trips for transportation (β=0.22) or 

discretionary (β=0.16) purposes. Furthermore, residing in a smart growth neighborhood 

had a negative direct influence on the average home-based trip distance for all 

household travel (β=-0.40). In fact, these paths from the second-order construct to the 

three home-based travel behaviors represented the largest standardized direct effect of 

any modeled determinant; however, caution must be stressed when providing 

conclusions based solely on the magnitude of direct effects (Van Acker et al., 2007; de 

Abreu e Silva, et al., 2012a). Accordingly, Table 14 provides an overview of the direct 

and total effects of the second-order smart growth construct as well as exogenous 



113 
 

sociodemographic and transportation characteristics on the two modeled binary home-

based walk trip outcomes. 

 

Table 14: Standardized Direct, Indirect, and Total Effects of the Structural Equation Model 

Indicator Name 

Walk Transportation 
Purposes 

Walk Discretionary 
Purposes 

Direct Indirect Total Direct Indirect Total 

Built Environment Characteristics 

Smart growth neighborhood 0.22 0.04 0.27 0.16 0.02 0.18 

Sociodemographic and Economic Characteristics 

Number of children under 6 years 0.05 0.01 0.05    
Number of children 6 years or older 0.16 0.05 0.21 0.06 0.04 0.10 
Number of adults 0.09 0.08 0.18 0.07 0.08 0.15 
Annual income: Under $25,000 --- --- --- --- --- --- 
Annual income: $25,000 to $49,999 -0.02 0.00 -0.02    
Annual income: $50,000 to $99,999 -0.05 0.04 -0.01    
Annual income: $100,000 or more -0.06 0.05 -0.01    
Household workers: 0 --- --- --- --- --- --- 
Household workers: 1 0.01 -0.04 -0.03 -0.03 -0.03 -0.06 
Household workers: 2 0.01 -0.04 -0.04 -0.04 -0.03 -0.08 
Household workers: 3 or more -0.04 -0.02 -0.06 -0.04 -0.02 -0.06 
Education: High school diploma or less --- --- --- --- --- --- 
Education: Associate’s degree or credits    -0.02 -0.01 -0.03 
Education: Bachelor’s degree    0.03 -0.04 -0.01 
Education: Graduate degree    0.05 -0.06 -0.01 

Transportation Characteristics 

Vehicles per licensed driver -0.05 -0.07 -0.11    
Transit passes per adult    -0.03 -0.05 -0.08 
Bikes per person 6 years or older 0.04 0.03 0.07    

Notes: Dashes (---) indicate the reference case. Empty cell indicates pathway between variables was not 
specified. 

 

Following the proposed conceptual framework, the observed sociodemographic 

and economic characteristics were directly predictive of the residential environment in 

addition to the average home-based trip distance for all travel modes and decisions to 

walk for transportation or discretionary purposes. Therefore, the total effect of all 

household-level socio-economic and transportation characteristics also included the 
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potential mediating impacts of the home built environment and average trip distance on 

the two pedestrian travel outcomes. Likewise, the total effect of a smart growth 

neighborhood on walking behaviors accounted for the indirect path through average 

home-based trip distance, which is theorized to directly influence the modal decision to 

walk. 

In terms of a household making one or more walk trips for either subsistence or 

maintenance activities, the total effect of residing in a neighborhood characterized by 

smart growth features had the greatest standardized impact in the final SEM estimation. 

Household composition factors related to the number of children over six years of age 

and adults also had a strong positive effect on conducting at least one home-based walk 

trip for transportation purposes, which may include either school- or work-related 

travel. An increase in the number of children under six years old had a marginally 

significant positive effect on walking for subsistence or maintenance activities. In 

contrast, a household with an increase in the number of workers or annual income were 

less likely to walk for transportation purposes, with the former predictor having a 

stronger total effect. As expected, the number of household vehicles per licensed driver 

had a significant, negative direct and total effect on non-discretionary walking; whereas, 

an increase in the number of bikes per individual six years of age or older had a positive 

total standardized effect. 

The total standardized effect of residing in a smart growth neighborhood on the 

household-level choice to participate in at least one walk trip for discretionary purposes 
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was also positive, albeit smaller in magnitude than the paths to non-discretionary 

walking. An increase in the number of household adults and children six years of age or 

older also had positive direct, indirect, and total standardized effects on the decision to 

participate in at least one daily walk trip for discretionary purposes. In contrast, an 

increase in the number of household workers had a significant, negative direct and total 

effect on walking. While the direct effect of having at least one household member with 

a graduate degree had a positive impact on discretionary walking, the total effect of this 

indicator became negative once the indirect effects were modeled. Finally, households 

with a higher proportion of transit passes per adult were less likely to have taken at 

least one walk trip for discretionary activities. 

 

4.5 Conclusions 

This study introduced a second-order latent construct reflecting three key tenets 

of smart growth land development and established its link to pedestrian travel in a 

conceptual model. While planning literature has long hypothesized this transportation-

land use connection, prior studies have inadequately addressed the multicollinearity of 

many built environment indicators and further misunderstood the contribution of these 

spatial phenomenon in a multidirectional modeling structure. To the first point, this 

study utilized latent factor analyses in finding that development patterns related to land 

use mix and density as well as urban design and transportation system features together 

explain variation in residential environments. Thus, a neighborhood with a walkable 
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environment characterized by a traditional street network design with strong sidewalk 

coverage and localized retail, mixed land development patterns represented by both 

complementary and spatially interspersed land use patches, and compact setting with 

high employment intensity indicated a smart growth neighborhood. When measured at 

the residential location, this latent construct had a stronger direct and total effect on 

increasing home-based, household-level pedestrian travel than those socio-economic 

characteristics tested in the theoretical model. Findings from the SEM corroborate 

generalizations of transportation-land use literature stating that trip distance is largely a 

function of the built environment, while mode choice is a function of both 

sociodemographic and built environment characteristics (Ewing, et al., 2015). 

Evidence from this study may be used to help inform pedestrian planning policy 

and guide practice away from contentious land development debates. Analysis of 

residential built environments both within and outside of Portland and its metropolitan 

region resulted in the creation of a smart growth construct accounting for the variation 

in urban, suburban, and rural communities. To combat urban sprawl with urban infill 

and suburban retrofitting policies, this study has provided planners with an identified 

set of indicators that may be toggled to improve built environment efficiencies and 

consequently encourage physically active modes of travel. Of further interest, the 

density-related latent construct was the weakest indicator of a smart growth 

neighborhood and had the notable omission of any population density measure. While 

increasing the level of employment opportunities in a community presents its own set 
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of difficulties, the strength of the other first-order factors suggests planners may 

achieve smarter growth by framing land development debates toward a dialogue of how 

development may be spatially configured and designed to promote walkability. 

Moreover, study findings support urban infill policies aimed at siting residential 

developments in existing employment districts as a favorable smart growth strategy. 

While this study has several exciting implications for policy and practice, 

research extensions should also address its limitations to offer further direction on how 

residential environments may be developed to encourage transportation-related 

physical activity. Foremost, the study’s cross-sectional research design limits the ability 

to establish causal inference and adequately control for residential self-selection bias in 

which a household chooses where to reside based on its travel preferences (Cao & 

Chatman, 2016). Yet, topic overviews have found that built environment characteristics 

influence active travel after accounting for any residential sorting (Cao, 2015). 

Additional sociodemographic variables, which may be assessed as a formative construct 

(e.g., Banerjee & Hine, 2016), and contextual factors (e.g., slope, weather) should be 

explored in alternative model specifications. Although the table of built environment 

indicators is extensive, the absence of psychosocial variables describing individual 

perceptions of the built environment and travel bias study findings. Relatedly, while a 

household-level analysis explains some inter-household dynamics, an adoption of a 

hierarchical SEM framework would enable an understanding of this transportation-land 

use connection at the level of the decision-maker. Further, while this SEM application 
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measured the built-environment at a pedestrian scale, more work is needed to 

understand the impact of alternative spatial scales for both operationalizing the 

proposed smart growth construct and measuring its contribution to travel behavior. 

Nevertheless, while some methodological limitations are inherent to any modeling 

application, this study delivers an empirical analysis in a multidirectional framework that 

highlights the continued prospect for smart growth land use policies to positively affect 

pedestrian travel outcomes. 
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Chapter 5: Operationalizing the Neighborhood Effects of the Built Environment on 

Travel Behavior 

 

5.1 Introduction 

Study of the transportation-land use connection has an established evidence 

base, which via contributions from the public health field has only started to investigate 

the impact of the built environment on walking as a mode of transportation and physical 

activity (Saelens & Handy, 2008). Prior transportation planning research almost 

exclusively investigated auto-related travel using regional built environment measures; 

however, most recent studies have adopted more suitable neighborhood-level 

indicators to evaluate any environmental connections to active transportation (Handy, 

et al., 2002). This shift in emphasis toward a rounded assessment of travel behavior is 

largely attributable to the advent of geographic information systems (GIS) and the 

pairing of disaggregate land use data with household travel diary datasets (Boarnett, 

2011) as well as an increased adoption in policies directed toward achieving goals of 

livability. In all, these technological advancements coupled with multidisciplinary 

interest have helped to guide the adoption of integrated transportation-land use 

programs aimed at creating walkable, activity-friendly communities. 

 Policies and programs that facilitate active transportation or physical activity are 

generally place-dependent and therefore linked to a person’s physical surroundings 

(Sallis 2009). Yet, conceptualizing the built environment with a set of key indicators 



120 
 

reflecting the dimensions of land development pattern, urban design, and 

transportation system remains a complicating factor in understanding the strength of 

this accepted relationship (Frank & Engleke, 2001). Although improvements in data 

quality and availability have aided this nontrivial task, many adopted measures are still 

inadequate for studying the link between the built environment and all modes of 

transportation (Handy, et al., 2002). A concern for practitioners and researchers alike 

who are interested in understanding how changes to these different dimensions of the 

built environment can moderate sustainable travel behaviors. Nonetheless, while 

representation of these dimensions with a succinct collection of contextual indicators 

continues to be a challenging endeavor, past studies generally reveal a positive 

association between the built environment and travel (Ewing & Cervero, 2010). 

However, given the wide variation in spatial boundaries chosen to operationalize these 

myriad measures, the extent of any environmental association with active or auto-

related travel remains somewhat unclear (Clark & Scott, 2014). 

 Inconsistencies in the modelled neighborhood effects of the built environment 

on travel behavior that result from the measurement of a traveler’s environmental 

context with different spatial boundaries is defined as the modifiable areal unit problem 

(Hess, et al., 2001). Given the fact that this problem may arise from representing 

different dimensions with particular levels of aggregation and zoning systems, it is 

surprising that this methodological issue has not received greater attention in the 

transportation-land use evidence base (Kwan & Weber, 2008). Additionally, the 
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prospect for scale-related decisions to distort the significance or degree of any theorized 

interaction confounds any understanding of how the physical context near each trip end 

effects an individual’s travel behavior for different trip purposes. In response to these 

identified needs, this article investigates how the operationalization of the built 

environment at each trip end potentially affects the connection of this multidimensional 

depiction of place to individual-level travel mode choices across trip purposes. 

 

5.2 Geographic Scale Variation in Transportation-Land Use Research  

The spatial nature of selecting a geographic scale to represent the built 

environment is inherent to studies testing the relationships between land development 

patterns and travel (Hess, et al., 2001). Contextual influences of travel behavior such as 

the built environment often stretch continuously across study areas, presenting a set of 

research challenges related to the complexity of dividing its spatial effect into distinct, 

overlapping, or multilevel units of analysis (Openshaw, 1983; Kwan, 2012). Expectedly, 

transportation-land use research has investigated the built environment’s impact on 

travel by using measures operationalized at varying spatial scales (Handy, et al., 2002), 

with few studies experimenting with scale variation (Boarnet, 2011). A chief concern of 

this inattention to scale selection is the reflection of built environment aspects with 

unsuitable spatial units that result in inconsistent study findings and policy implications 

(Frank, 2000). 
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 In geographic and statistical literature, the sensitivity of analytic results to the 

definition of spatial units for collecting and reflecting these neighborhood effects refers 

to the modifiable areal unit problem (MAUP; Fotheringham & Wong, 1991). The MAUP 

consists of two components, scale and zoning effects, which arise from the subjective 

decision of boundary delineations in reporting contextual influences. The scale effect 

describes the sensitivity or unreliability of built environment measures due to changes 

in the size of the selected geographic unit of analysis (Gehlke & Biehl, 1934; Openshaw, 

1983). Therefore, any variation in the association between the built environment and 

travel may simply be the result of adopting smaller or larger scales to reflect the former 

phenomenon. In contrast, the zoning effect arises from the multitude of ways to 

configure a spatial boundary or neighborhood at each level of aggregation (Jelinski & 

Wu, 1996). The following subsections, organized by the operationalization of the built 

environment with fixed or sliding scales (Guo & Bhat, 2007; Gehrke & Clifton, 2016), 

provide a review of previous studies of scale variation to recognize its influence on 

understanding the built environment determinants of travel. 

 

5.2.1 Fixed geographic scales 

Describing a built environment aspect within a predefined set of distinct, 

adjoining boundaries represents the application of a fixed geographic scale to study 

neighborhood effects. The implementation of a fixed zonal system to operationalize 

built environment measures is typically due to analytical convenience, data availability, 



123 
 

and the attractiveness of a prevailing hierarchical structure (Kwan & Weber, 2008). 

Examples of fixed zonal systems include administrative, statistical, and artificial 

boundaries (Gehrke & Clifton, 2016). The use of statistical boundaries (e.g., census 

units) to describe the local built environment is pervasive in travel behavior research 

because of the ease of obtaining sociodemographic and economic data for the same 

boundary (Guo & Bhat, 2007) and their objective approximation of the neighborhood 

unit (Manaugh & Kreider, 2013). However, variation in the spatial scale of contiguous 

statistical boundaries has directed the increased adoption of artificial boundaries (e.g., 

grid cells) that assess the neighborhood effect of the built environment by generating a 

uniformed, synthetic zoning system (Krizek, 2003b). 

 In an early study of the MAUP within transportation-land use research, Zhang 

and Kukadia (2005) utilized three statistical and five artificial zoning systems to 

operationalize the built environment around an individual’s residence to assess its 

impact on travel mode choice. Considering three common measures, the authors noted 

tractable and stable estimation results of home-based travel when operationalizing the 

built environment with artificial boundaries. In a study of active travel in Halifax, Clark 

and Scott (2014) compared the use of statistical and artificial boundaries to 

operationalize five land development pattern, urban design, and transportation system 

characteristics of the traveler’s home environment. Their study findings corroborate the 

prior work by suggesting the MAUP has a significant influence on the relationship 

between the built environment and active travel. Other studies outside the United 



124 
 

States (Duncan, et al., 2010; Learnihan, et al., 2011; Mitra & Buliung, 2012) similarly 

employed statistical boundaries to understand the impact of their adoption for 

quantifying the neighborhood effect of the built environment on physical activity. 

Investigating land use mix, Duncan et al. (2010) measured development patterns at four 

census scales and found adjusting for scaling effects improved the phenomenon’s 

association with walk trip duration. Learnihan et al. (2011) examined the impact of four 

walkability indicators near the residence on walking for transport and recreation; 

whereas, Mitra and Buliung (2012) considered the influence of a greater set of 

contextual indicators near the home location and destination on school-related walking 

and bicycling. In addition, Houston (2014) found evidence of zoning effects, by using 

three artificial boundaries to estimate the neighborhood effects of five environmental 

measures at home and non-home locations on moderate and physical activity bouts.  

Overall, studies examining the MAUP through the adoption of fixed geographic 

scales confirm the influence of scaling and zoning effects on understanding the 

transportation-land use connection. Zoning effects result from the seemingly arbitrary 

placement of a trip end, which may be closer to the center or perimeter of the 

partitioned space, inside the unit of analysis (Oliver, et al., 2007; Mitra & Buliung, 2012). 

For this reason and the wider availability of disaggregate data that reduces the scaling 

effect (Clark & Scott, 2014), recent studies have also generally operationalized the built 

environment with sliding scales. 
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5.2.2 Sliding geographic scales 

Measuring an individual’s contextual surroundings at a given activity location by 

using objective distance- or time-related boundaries indicates the adoption of a sliding 

geographic scale (Guo & Bhat, 2007; Gehrke & Clifton, 2014). Sliding scales offer an 

individual-centric operationalization of the neighborhood concept that tries to explain 

those built environment aspects most likely to affect travel decisions (Gehrke & Clifton, 

2016). The creation of areal buffers extending from an activity location, a sliding scale 

application, permits the formation of overlapping spatial boundaries that enable 

variation in neighborhood delineations. Yet, the assumption that the environment 

within this circular-unit representation is equally consequential in all directions to the 

decision-making process and an insensitivity to the physical constraints to local access 

presented by nearby natural and artificial boundaries limits the appeal of areal buffers 

(Guo & Bhat, 2007). Network bands, which confine the neighborhood boundary to 

include only the area that an individual can hypothetically travel in all directions along a 

street network, reflect a more nuanced way to operationalize the built environment 

with a sliding geographic scale (Frank, et al., 2008). 

 Utilizing areal buffers and network bands at four spatial extents, Forsyth et al. 

(2007) found only modest relationships between physical activity and housing, 

population, employment, and activity density at the home location. The authors were 

unable to conclude at what scale density matters most for physical activity and 

identified the importance of examining other environmental features for increasing 
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walking rates. Operationalizing population density as well as business intensity and 

intersection density with four areal buffer extents, Boone-Heinonen et al. (2010) 

revealed higher physical activity levels were generally associated with the latter two 

aspects at smaller spatial extents. However, in a Seattle-based study of the built 

environment and physical activity in older adults, Berke et al. (2007) found a significant 

association between increased walking for exercise and a walkability index comprised of 

eight features including housing and retail store density, across three areal buffers. Kerr 

et al. (2014) echoed this finding in a San Diego-based study of physical activity in older 

women, but acknowledged small effect sizes. This last study, like studies by Forsyth et 

al. (2007) and Learnihan et al. (2013), used network bands to assess the impact of 

scaling effects on the relationship between the built environment at the home location 

and walking. In a study of travel mode choice and land use mixing, Gehrke and Clifton 

(2014) explored the scaling and zoning effects of seven land composition measures 

operationalized at the trip origin and destination with two statistical boundaries and 

two network bands. Their study found land use diversity at the trip destination had a 

positive relationship with walking and bicycling when calculated at the larger spatial 

extents. 

 Sliding scale representations of the built environment represent a 

methodological and conceptual improvement over fixed scaled delineations of the 

neighborhood concept. Foremost, by only measuring the built environment that 

immediately extends from a given activity location, areal buffers and networks bands 
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place an individual at the neighborhood’s center and avoid statistical biases linked to 

placement near another spatial unit. Second, by eliminating physical barriers and 

limiting this delineated space based on access along the street network, the application 

of objective network bands helps guide MAUP-related research closer to the ideal 

application of perceptive scales such as mental maps (Figure 6). Considering the many 

limitations in data availability and the dynamic nature of perceived geographic scales 

(Arentze & Timmermans, 2005), their adoption within the transportation literature is 

uncommon. 

 

 
Figure 6: Classification of Zonal Systems for Representing the Neighborhood Effects of the Built 
Environment 

 

 While recent health-related studies have investigated the impact of the MAUP 

on any potential connections between walkability indicators and walking behaviors, 

transportation research has given less attention to the decision of geographic scale 
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selection. The continued variation in the choice of scale and spatial extent to study this 

relationship increases the likelihood that the MAUP may have affected study findings 

and creates uncertainty in the extent of any modeled relationship (Clark & Scott, 2014). 

For this reason, recent transportation studies (Mitra & Buliung, 2012; Clark & Scott, 

2014) have started to consider the implications of scale and zoning effects on 

recognized transportation-land use connections. Extending these efforts, this study 

operationalizes an extensive list of built environment measures with a wide range of 

zonal systems to (a) analyze the connection between travel mode choice and the built 

environment at varying fixed and sliding scales, and (b) investigate the contribution of 

the built environment at each trip end for adult travel to work and nonwork locations. 

 

5.3 Data and Methods 

 

5.3.1 Travel behavior data and study area 

This study used transportation data provided by an activity-travel survey of 

46,414 individuals from 19,932 randomly sampled households in Oregon between 2009 

and 2012. The Oregon Household Activity Survey was a one-day diary of weekday travel 

reported by a chosen household member who detailed information on the activity 

locations, trip purposes, and modes of all out-of-home travel conducted by their 

household as well as sociodemographic and economic characteristics of the household 

and its individual members. The travel behaviors and patterns of a subsample of 3,139 
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adults from 1,912 home locations within the City of Portland, who performed 4,745 

home-based trips to a destination inside the three-county Portland metro region, were 

analyzed in this study. Table 15 describes the study sample. 

Of these home-based unlinked trips, most individuals traveled to their activity 

location as either the driver or passenger of a private vehicle (77%), while other 

travelers selected a more active mode such as walking (12%) or bicycling (8%). Nearly 

one-half (47%) of these recorded out-of-home trips were related to carrying out 

subsistence activities such as commuting to work or school, while the remaining 

nonwork trips were related to conducting travel for mandatory (e.g., shopping) or 

discretionary (e.g., recreation) purposes. Overall, the average distances for home-based 

work (HBW) and home-based nonwork (HBNW) trips were 4.70 and 2.41 miles, 

respectively. This relationship was consistent across the different travel modes for the 

study subsample. The average HBW trip distance was 6.76 miles for individuals riding 

public transit, 5.09 miles for automotive travel, 2.79 miles for bicyclists, and 0.64 miles 

for pedestrians. As for nonwork trips, on average, an individual traveled 4.35 miles when 

using transit, 2.78 miles when driving, 1.54 miles when bicycling, and 0.33 miles when 

walking from their residence to an out-of-home location. 

 

Table 15: Descriptive Statistics of the Study Sample 

Variable Name n % Mean 
St. 
Dev. Min Max 

Individual Characteristics (n = 3,139)       

Gender: Female 1,704 0.54 --- --- 0.00 1.00 
Age: 16 to 29 years old 339 0.11 --- --- 0.00 1.00 
Age: 30 to 44 years old 764 0.25 --- --- 0.00 1.00 
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Age: 45 to 64 years old 1,472 0.48 --- --- 0.00 1.00 
Age: 65 years or older 521 0.17 --- --- 0.00 1.00 
Education: High school diploma or less 494 0.16 --- --- 0.00 1.00 
Education: Associate’s degree or credits 657 0.21 --- --- 0.00 1.00 
Education: Bachelor’s degree 985 0.32 --- --- 0.00 1.00 
Education: Graduate degree 989 0.32 --- --- 0.00 1.00 
Employed: Part- or full-time 2,193 0.70 --- --- 0.00 1.00 
Student: Part- or full-time 314 0.10 --- --- 0.00 1.00 
Disability affecting travel 202 0.06 --- --- 0.00 1.00 
Driver’s license 2,878 0.92 --- --- 0.00 1.00 
Parking provided at no charge by employer 1,621 0.68 --- --- 0.00 1.00 
Transit pass 629 0.20 --- --- 0.00 1.00 
Transit pass provided at no charge by 
employer 

293 0.12 --- --- 0.00 1.00 

Bike 1,248 0.40 --- --- 0.00 1.00 

Household Characteristics (n = 1,912)       

Number of children under 6 years old --- --- 0.13 0.42 0.00 4.00 
Number of children 6 to 15 years old --- --- 0.25 0.62 0.00 4.00 
Number of adults --- --- 1.85 0.73 1.00 7.00 
Number of part- or full-time workers --- --- 1.84 0.69 1.00 7.00 
Non-related household 69 0.04 --- --- 0.00 1.00 
Annual income: Under $25,000 247 0.14 --- --- 0.00 1.00 
Annual income: $25,000 to $49,999 381 0.22 --- --- 0.00 1.00 
Annual income: $50,000 to $99,999 696 0.40 --- --- 0.00 1.00 
Annual income: $100,000 or more 431 0.25 --- --- 0.00 1.00 
Oldest adult: 16 to 29 years old 63 0.03 --- --- 0.00 1.00 
Oldest adult: 30 to 44 years old 399 0.21 --- --- 0.00 1.00 
Oldest adult: 45 to 64 years old 962 0.51 --- --- 0.00 1.00 
Oldest adult: 65 years or older 467 0.25 --- --- 0.00 1.00 
Highest education: High school diploma or 
less 148 

0.08 
--- --- 

0.00 1.00 

Highest education: Associate’s degree 340 0.18 --- --- 0.00 1.00 
Highest education: Bachelor’s degree 595 0.31 --- --- 0.00 1.00 
Highest education: Graduate degree 826 0.43 --- --- 0.00 1.00 
Household vehicles per licensed driver --- --- 0.92 0.48 0.00 3.00 
Household transit passes per adult --- --- 0.20 0.34 0.00 1.00 
Household bikes per person 6 years or 
older --- 

--- 
0.64 0.76 0.00 13.00 

 

5.3.2 Built environment data and measurement 

To supplement these characteristics of the traveler and his/her home-based 

travel behavior, information describing the land development patterns, urban design, 

and transportation systems near an individual’s residence and his/her destination were 
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collected. Land development patterns denote both the density of activities within a 

neighborhood and their composition or spatial configuration in terms of land use mixing 

(Gehrke & Clifton, 2017a; Gehrke & Clifton, 2017b). Reduced trip lengths and 

subsequent increases in travel mode availability are posited to be associated with an 

intensification in the diversity and interspersion of local activities or land uses (Frank & 

Engelke, 2001). Urban design, on the other hand, describes the arrangement and 

appearance of various environmental features; whereas, the transportation system 

details the physical infrastructure and performance of the various systems presented to 

the traveler (Saelens & Handy, 2008). Features in the former dimension describe the 

desirability for travel and are more likely to affect walking and cycling in which a person 

moves through a setting at a slower rate, while transportation systems are integral to 

providing connections between trip origins and destinations (Frank & Engelke, 2001). 

A wide-ranging list of indicators for each of these dimensions was measured for 

this study (Table 16). These 57 variables were calculated using secondary land use data 

provided by the 2011 Portland Metro Regional Land Information System, 2010 US 

Census, 2014 Longitudinal Employer-Household Dynamics (LEHD) Program, and 2010 

Topologically Integrated Geographic Encoding and Referencing files. Density variables 

describe the number of housing units, persons, and employment activities per acre. 

Land use composition indicators assess the balance in jobs and housing, diversity in 

employment activities, relative proportion of land use types, and frequency of 

landscape patches within a neighborhood. The distribution of multiple land use types 
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was assessed using two versions of the land use entropy index (Cervero, 1989), balance 

(Bhat & Gossen, 2004), and activity-related complementarity (Gehrke & Clifton, 2017a) 

measures. The final pattern aspect, configuration, denotes the shape, size, and 

arrangement of landscape patches in a neighborhood (Clifton, et al., 2008). The 

contagion index (Li & Reynolds, 1994; Gehrke & Clifton, 2017a) is a configuration 

measure differentiating neighborhoods with a small number of contiguous patches from 

those areas with an intermixing of dissimilar patches. The dozen urban design and 

transportation system indicators reflect attempts to identify the permeability of the 

street network system and the relative ease of either passive or active travelers to move 

throughout their physical environments. The alpha, beta, cyclomatic, and gamma 

indices noted in Table 16 are network structure and connectivity indices introduced in 

prior transportation-land use studies (Dill, 2004; Levinson, 2012; Song, et al., 2013b). 

In this study, all described built environment indicators were calculated at both 

the residence and trip destination. To recognize the potential impact of the MAUP, the 

built environment at each trip end was operationalized using 12 different combinations 

of zonal systems and scale extents. The first pair of geographies reflect statistical zonal 

systems measuring the context with spatial extents at the US Census tract and block 

group. Adopting another pairing of fixed scale geographies, the built environment was 

also measured using artificial boundaries where grid cell systems of one-quarter-mile 

and one-mile edges were casted over the study area. For both fixed scale strategies of 

built environment measurement, the home and trip destination were assigned the 
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attributes of the statistical or artificial boundary in which they were located. A second 

measurement strategy used two sliding geographic scales, areal buffers and network 

bands, to measure the built environment around the origin and destination at one-

quarter-, one-half-, three-quarter-, and one-mile spatial extents. Disaggregate data were 

simply summarized to the geography of interest; whereas, data from the US Census and 

LEHD datasets were provided at the block-level and aggregated to the respective 

neighborhood representation using a proportional split method. While use of the 

smallest available spatial unit limits MAUP-related sensitivity, one assumption of this 

strategy is the uniform dispersion of all attributes in the selected geographic boundary 

(Schlossberg, 2003). 

 

Table 16: Description of Built Environment Indicators 

Variable Name Description Sourcea 

Land Development Patterns: 
Density 

  

Housing density Number of housing units per acre C 
Persons density Number of persons per acre C 
Jobs density Number of jobs per acre L 
Activity density Sum of persons and jobs per acre C, L 
Retail jobs density Number of retail jobs per acre L 
Office jobs density Number of office jobs per acre L 
Industrial jobs density Number of industrial jobs per acre L 
Service jobs density Number of service jobs per acre L 
Entertainment jobs density Number of entertainment jobs per acre L 

Land Development Patterns: 
Land use mix, Composition 

  

Jobs-housing balance Ratio of jobs-to-housing units C, L 
Employment entropy Entropy index based on five job sub-categories L 
Land use percent: Residential Percent of land area classified as residential R 
Land use percent: Retail Percent of land area classified as retail R 
Land use percent: Manufacturing Percent of land area classified as manufacturing R 
Land use percent: Utilities Percent of land area classified as utilities R 
Land use percent: Entertainment Percent of land area classified as entertainment R 
Land use percent: Education Percent of land area classified as education R 
Land use percent: Construction Percent of land area classified as construction R 
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Land use percent: Extraction Percent of land area classified as extraction R 
Land use percent: Agricultural Percent of land area classified as agricultural R 
Land use entropy index 1 Diversity amongst nine land uses R 
Land use entropy index 2 Diversity amongst five land uses: 

Residential, retail, entertainment, education, and 
other  

R 

Land use balance 1 Evenness in spatial footprint of nine land uses R 
Land use balance 2 Evenness in spatial footprint of five land uses: 

Residential, retail, entertainment, education, and 
other 

R 

Activity-related complementarity 
1 

Balance in nine land uses based on activity 
participation 

O, R 

Activity-related complementarity 
2 

Balance in five land uses based on activity 
participation: Residential, retail, entertainment, 
education, and other 

O, R 

Land use patches: Residential Percent of landscape patches classified as residential R 
Land use patches: Retail Percent of landscape patches classified as retail R 
Land use patches: Manufacturing Percent of landscape patches classified as 

manufacturing 
R 

Land use patches: Utilities Percent of landscape patches classified as utilities R 
Land use patches: Entertainment Percent of landscape patches classified as 

entertainment 
R 

Land use patches: Education Percent of landscape patches classified as education R 
Land use patches: Construction Percent of landscape patches classified as 

construction 
R 

Land use patches: Extraction Percent of landscape patches classified as extraction R 
Land use patches: Agricultural Percent of landscape patches classified as agricultural R 

Land Developments: 
Land Use Mix, Configuration  

 

Maximum patch size: Residential Percent of land area covered by largest landscape 
patch classified as residential 

R 

Maximum patch size: Retail Percent of land area covered by largest landscape 
patch classified as retail 

R 

Maximum patch size: 
Manufacturing 

Percent of land area covered by largest landscape 
patch classified as manufacturing 

R 

Maximum patch size: Utilities Percent of land area covered by largest landscape 
patch classified as utilities 

R 

Maximum patch size: 
Entertainment 

Percent of land area covered by largest landscape 
patch classified as entertainment 

R 

Maximum patch size: Education Percent of land area covered by largest landscape 
patch classified as education 

R 

Maximum patch size: 
Construction 

Percent of land area covered by largest landscape 
patch classified as construction 

R 

Maximum patch size: Extraction Percent of land area covered by largest landscape 
patch classified as extraction 

R 

Maximum patch size: Agricultural Percent of land area covered by largest landscape 
patch classified as agricultural 

R 

Maximum patch size Percent of land area covered by largest landscape 
patch 

R 

Urban Design and   
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Transportation System 

Average street block size Average size of street blocks in acres T 
Alpha index Ratio of observed circuits to maximum number of 

circuits 
T 

Beta index Ratio of street links to all intersections T 
Cyclomatic index Ratio of 3- and 4-way intersections to all intersections T 
Gamma index Ratio of observed street links to maximum number of 

street links 
T 

Intersection density Number of 3- and 4-way intersections per acre T 
Intersection proportion Proportion of 3- and 4-way intersections T 
Cul-de-sac density Number of cul-de-sacs per acre T 
Street density Length of street network in feet per acre T 
Percent of local roads Percent of local roads T 
Percent of primary roads Percent of primary roads T 
Sidewalk coverage Percent of observed sidewalks to potential existence 

of sidewalks along roads 
T 

Note: a Data source abbreviations: (C) 2010 US Census Bureau, (L) 2014 US Census Longitudinal Employer-
Household Dynamic, (O) 2011 Oregon Household Activity Survey, (R) 2011 Portland Metro Regional Land 
Information System, and (T) 2010 US Census Topologically Integrated Geographic Encoding and 
Referencing. 

  

5.3.3 Analytic strategy 

The analytic strategy for this study has two components. The first investigates 

the impact of the MAUP on the association between the built environment at each trip 

end and pedestrian travel. A second statistical analysis utilizes these findings to inform 

the estimation of two mode choice models assessing the role of the built environment 

at each trip end on travel for work and nonwork purposes. 

 The scale effects of the MAUP on the built environment at an individual 

traveler’s residence and trip destination were investigated by performing two zero-

order correlation analyses. At the trip origin, the point-biserial correlation coefficient 

between a variable describing the household-level decision to perform at least one daily 

trip via walking and each combination of contextual indicator and geography was 

calculated. Likewise, a correlation analysis was performed between a binary variable of 
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the individual-level decision to participate in a walk trip and each combination of 

indicator and boundary to describe the scaling effect of the MAUP on the built 

environment near the trip destination. The outcome of this initial analysis provides 

insight into the scale effect through the identification of visual trends in the statistical 

significance and magnitude of these 1,392 associations. An understanding of the 

potential zoning effects of the built environment connection with active travel was 

investigated by comparing these associations found at each trip end across comparable 

spatial extents but different zonal systems (i.e., one-mile areal buffer versus one-mile 

network band). After this analysis of the MAUP’s effect on the built environment 

connection to pedestrian travel, the pairing of indicator and geographic boundary at 

each trip end with the strongest absolute magnitude was selected for further testing in 

the two mode choice models. 

Discrete choice modeling (DCM) is an established strategy for empirically 

modeling the relative importance of individual and alternative characteristics in travel 

mode choice (Cervero, 2002; Handy, et al., 2002). In this framework, the mode choice 

set considered by a decision maker comprises an exhaustive, finite list of four mutually 

exclusive alternatives: auto, transit, bicycle, and walk. The individual is described by a 

set of personal, household, and transportation-related characteristics described 

previously in Table 15, while the alternative and contextual characteristics include travel 

time, travel cost, and the built environment at each activity location. Adoption of 

disaggregate DCM offers the ability to represent changes in mode choice behavior 
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related to varying individual, alternative, and contextual features and modify the choice 

set to only include those alternatives available to an individual (Ben-Akiva & Lerman, 

1985; Koppelman & Bhat, 2006; Train, 2009). 

Travel time, measured in minutes, was an alternative-specific attribute 

calculated using the 2010 travel skims modeled by Portland Metro at the traffic analysis 

zone (TAZ). Midday and peak period travel times for each feasible alternative were 

determined by matching each trip end to its respective TAZ and then linking the trip 

departure times to the appropriate time-of-day skim. The feasible mode choice set was 

defined by the following assumptions. Since no distinction was made between auto-

related travel as a driver or passenger, the only restriction for this alternative was that 

the ratio of licensed drivers per household vehicle must exceed zero. For transit, which 

entailed bus and rail-based modes, availability was predetermined for each TAZ 

geography in the modeled skims. Bicycling and walking were considered as available 

modes if the individual’s trip could be conducted in two hours assuming an average 

travel speed of 9.0 and 3.5 miles per hour, respectively. An additional constraint was 

placed on bicycle availability if the number of household bikes was zero. Travel costs 

were not calculated for observed or alternative trips using an active transportation 

mode; however, the costs associated with auto and public transit use were modeled and 

based on assumptions previously described elsewhere (Singleton & Wang, 2014). 

The application of this DCM framework enabled a cumulative strategy for 

assessing how land development pattern, urban design, and transportation system 
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features at the trip origin and destination affect home-based modal decisions for work 

and nonwork travel. First, a reduced model was estimated using individual- and 

household-level attributes of the traveler and alternative-specific characteristics of the 

trip. Second, built environment features measured at the residence were added to the 

base model. These indicators, operationalized at a boundary determined by the earlier 

MAUP-related analysis, were added to the base model by a forward selection process in 

which the log-likelihood of the newly-specified model was then tested against the base 

model’s fit. The variable that produced an expanded model with the best model fit was 

retained. This iterative process continued until the addition of a contextual feature to 

the previous model specification no longer produced a statistically significant 

improvement according to the log-likelihood ratio test. The full model specification was 

determined by repeating this step for all features measured at the trip destination. This 

analytic strategy produced a base and full model of mode choice for HBW and HBNW 

trip purposes that provides insight into the neighborhood effect of the built 

environment on travel behavior. 

 

5.4 Results 

 

5.4.1 Scale and zoning effects 

The magnitude and direction of the relationship between the 57 built 

environment features measured at 12 geographies and pedestrian travel were 
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investigated to assess MAUP-related effects. Inspection of the scale effect of the built 

environment at the trip origin is guided by the results of the correlation analysis in 

Figure 7. Looking at the set of density measures, a consistently positive association was 

found between the household decision to conduct at least one walk trip and an 

increased intensity in activities within a residential neighborhood. Within sliding scale 

zonal systems, the strength of the point-biserial correlation coefficient remained above 

0.10 at each of the four spatial extents. A similar finding occurred within the two scale 

extents for the statistical and artificial boundaries; however, operationalizing density 

measures with a grid cell revealed a small and counterintuitive connection to the 

household-level walking behavior. 

Comparing land use mix measures operationalized with fixed scales, the effect 

size and direction of correlation coefficients generally remained unchanged at the two 

spatial extents. Consistency was also exhibited when the configuration measures related 

to maximum patch size and the contagion index were measured using areal buffers or 

network bands. Land use composition measures, however, showed signs of scaling 

effects when measured with these two sliding scale representations. Using areal buffers, 

both versions of the land use entropy index and activity-related complementarity 

measure had strong, positive associations with walking at the smaller spatial extents, 

but this effect size decreased as the zoning size increased. The flattening of this 

connection due to increased aggregation levels has been noted elsewhere in the 

literature (Zhang & Kukadia, 2005; Mitra & Buliung, 2012; Clark & Scott, 2014). 
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Interestingly, the adoption of network bands to represent street network connectivity 

revealed two instances where this recognized trend was contradicted. The strength of 

the relationship between the household-level decision to walk and the alpha and 

gamma indices improved as the spatial extent increased. This discovery could be the 

result of micro-level urban design features having a greater effect on walking when the 

connectivity of a network extends and consequently increases the feasibility and 

attractiveness of longer walk trips. 

The scale effects of built environment measurement at the destination were also 

examined (Figure 8), but the relationships between these features when measured at 

this trip end and the individual-level decision to walk were not as robust. Density in 

housing and employment in office or entertainment sectors exhibited scaling effects 

when operationalized with artificial boundaries. Both land use entropy and the 

maximum residential patch size were also impacted by increased aggregation levels 

when measured by an areal buffer zoning system, while the former mix indicator also 

suffered from scaling effects when operationalized using grid cells or network bands. In 

contrast, the percent of residential or retail land uses in a neighborhood defined by 

areal buffers had a diminishing strength of relationship with walking as the spatial 

extent increased. Similar to the origin-related analysis, several connectivity indices 

demonstrated an increased strength of relationship with walking as the spatial extent of 

the areal buffer increased. 
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Visual inspection of Figure 7 and 8 can also deliver insight into the potential 

zoning effects of the built environment connection to pedestrian travel. Unfortunately, 

a more definitive assessment of the impact of zoning systems across fixed geographic 

extents can only be achieved by comparing different orientations of the same zoning 

system (Clark & Scott, 2014). One illustration of this strategy would be the placement of 

numerous orientations of grid cells with one-mile edges over a trip end in order to 

measure any changes in the strength of association due to the varying contexts enclosed 

around the trip end. This study, instead, conducted a pseudo analysis of zoning effects 

by comparing associations between walking and the built environment at identical 

spatial extents for the two sliding geographic scales. 
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Figure 7: Zero-Order Correlation between Walking and Built Environment at Trip Origin (N = 1,912) 
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Figure 8: Zero-Order Correlation between Walking and Built Environment at Trip Destination (N = 4,745) 
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Overall, zoning effects were not apparent for those density indicators measured 

at both the trip origin and destination. Comparison of mix measures operationalized 

with areal buffers to network bands, in turn, showed more instances of zoning effects. 

Measured at the home location, several composition indicators were impacted by 

zoning system selection, including the land use and employment entropy indices, 

activity-related complementarity, and jobs-housing balance measures. Beyond a set of 

composition measures, two configuration measures describing the maximum size of a 

residential or retail landscape patch in the neighborhood encircling the destination also 

displayed zoning effects. As for the other built environment dimensions, measures of 

the average city block size, alpha index, and gamma index were all impacted by zonal 

configuration decisions at both trip ends. However, in line with the overall trend, zoning 

effects appeared to be most prominent at the trip destination when analyzing the 

neighborhood effects of the built environment on walking. 

 

5.4.2 Travel mode choice 

Extending the utility of these MAUP-related findings, a second analysis was 

performed to understand the neighborhood effects of the built environment at each trip 

end on travel mode choice. Adding this second component provided behavioral 

complexity to this study by (a) accounting for individual, household, and transportation 

characteristics that may confound any observed active transportation-land use 

association and (b) refining an individual’s choice set to only consider realistic travel 



145 
 

alternatives. Table 17 describes the built environment indicators at each trip end that 

were tested in these multinomial logistic regression analyses of work and nonwork 

travel. In the name of parsimony and a desire to select the geography best 

operationalizing the built environment’s connection to pedestrian travel, the 

contribution of each feature to mode choice was only investigated at the indicator-scale 

pairing with the strongest correlation. 

 

Table 17: Descriptive Statistics of Built Environment at Sampled Trip-Ends 

Variable Name Origin (n=1,912) Destination (n=4,745) 

Land Development Patterns: 
Density Scalea CORRb Mean SD Scalea CORRc Mean SD 

Housing density NB075 0.26 5.47 11.94 G100 -0.11 0.05 0.06 
Persons density NB050 0.24 11.94 5.19 NB025 0.13 11.46 9.32 
Jobs density AB100 0.23 6.00 9.37 G100 -0.12 0.24 0.46 
Activity density AB100 0.23 15.88 11.40 G100 -0.13 0.37 0.50 
Retail jobs density NB100 0.23 0.60 0.82 G100 -0.08 0.02 0.06 
Office jobs density AB100 0.21 1.23 3.22 G100 -0.11 0.03 0.05 
Industrial jobs density AB100 0.23 0.86 1.11 G100 -0.07 0.06 0.23 
Service jobs density NB100 0.21 2.74 4.60 G025 -0.07 2.67 9.31 
Entertainment jobs density NB050 0.24 0.90 2.14 G100 -0.10 0.02 0.03 

Land Development Patterns: 
Land Use Mix, Composition 

        

Jobs-housing balance AB100 0.19 1.05 1.05 CBG -0.08 7.73 23.76 
Employment entropy NB025 0.15 0.56 0.26 G100 -0.09 0.59 0.24 
Land use percent: Residential NB050 -0.21 0.54 0.15 NB025 0.16 0.31 0.23 
Land use percent: Retail AB025 0.20 0.07 0.09 NB050 -0.10 0.16 0.13 
Land use percent: 
Manufacturing 

NB050 0.05 0.01 0.04 G100 -0.08 0.05 0.09 

Land use percent: Utilities NB075 0.05 0.00 0.01 CBG -0.07 0.02 0.07 
Land use percent: 
Entertainment 

CT -0.05 0.06 0.08 G100 0.04 0.05 0.07 

Land use percent: Education AB100 -0.03 0.05 0.02 AB100 -0.13 0.06 0.03 
Land use percent: 
Construction 

NB050 0.04 0.00 0.00 G100 -0.07 0.00 0.00 

Land use percent: Extraction G100 0.04 0.00 0.00 G100 -0.03 0.00 0.01 
Land use percent: Agricultural AB050 -0.07 0.01 0.03 AB100 -0.07 0.01 0.04 
Land use entropy index 1 NB025 0.16 0.35 0.15 CT -0.09 0.60 0.12 
Land use entropy index 2 NB025 0.16 0.26 0.11 G100 -0.12 0.43 0.10 
Land use balance 1 NB050 0.19 0.38 0.13 G100 -0.09 0.50 0.15 
Land use balance 2 NB050 0.20 0.32 0.10 G100 -0.08 0.41 0.11 
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Activity-related 
complementarity 1 

NB025 0.18 0.77 0.14 NB025 0.07 0.82 0.18 

Activity-related 
complementarity 2 

NB025 0.18 0.77 0.14 NB025 0.07 0.82 0.17 

Land use patches: Residential NB050 -0.19 0.69 0.17 NB025 0.17 0.47 0.27 
Land use patches: Retail NB100 0.22 0.22 0.10 NB025 -0.07 0.32 0.21 
Land use patches: 
Manufacturing 

AB100 0.10 0.03 0.04 G100 -0.09 0.06 0.09 

Land use patches: Utilities CBG -0.04 0.01 0.02 CT -0.09 0.02 0.03 
Land use patches: 
Entertainment 

AB075 -0.10 0.02 0.02 AB075 -0.09 0.03 0.03 

Land use patches: Education NB050 0.07 0.06 0.04 AB100 -0.16 0.08 0.04 
Land use patches: 
Construction 

AB100 -0.09 0.01 0.01 AB100 -0.10 0.01 0.01 

Land use patches: Extraction NB050 0.05 0.00 0.00 AB100 -0.06 0.00 0.00 
Land use patches: Agricultural CT -0.08 0.01 0.03 AB100 -0.07 0.01 0.02 

Land Developments: 
Land Use Mix, Configuration 

        

Maximum patch size: 
Residential 

NB025 -0.19 0.11 0.11 AB100 -0.11 0.02 0.02 

Maximum patch size: Retail G025 0.07 0.03 0.05 AB025 -0.11 0.05 0.08 
Maximum patch size: 
Manufacturing 

G100 -0.04 0.01 0.02 AB050 -0.08 0.02 0.04 

Maximum patch size: Utilities NB050 0.05 0.00 0.01 CBG -0.06 0.01 0.06 
Maximum patch size: 
Entertainment 

AB100 -0.05 0.03 0.04 AB075 0.06 0.02 0.03 

Maximum patch size: 
Education 

NB100 -0.09 0.02 0.02 NB100 -0.07 0.02 0.04 

Maximum patch size: 
Construction 

G100 -0.05 0.00 0.00 CT -0.08 0.00 0.00 

Maximum patch size: 
Extraction 

G100 0.04 0.00 0.00 AB100 -0.03 0.00 0.01 

Maximum patch size: 
Agricultural 

AB050 -0.08 0.00 0.02 AB100 -0.07 0.00 0.02 

Maximum patch size NB025 -0.18 0.13 0.11 NB025 -0.12 0.16 0.18 

Urban Design and 
Transportation System 

        

Average street block size NB025 -0.16 7.76 7.88 G025 -0.13 10.44 12.40 
Alpha index AB100 0.25 0.31 0.10 AB100 0.13 0.33 0.11 
Beta index AB100 -0.24 0.63 0.09 AB100 -0.13 0.62 0.09 
Cyclomatic index NB050 0.25 96.51 55.98 NB100 0.13 352.95 215.20 
Gamma index AB100 0.25 0.54 0.07 AB100 0.13 0.55 0.07 
Intersection density AB050 0.21 0.32 0.12 AB075 0.15 0.31 0.13 
Intersection proportion CT 0.21 0.86 0.11 AB100 0.16 0.84 0.11 
Cul-de-sac density CT -0.18 0.05 0.03 AB100 -0.10 0.05 0.03 
Street density NB075 0.22 227.30 51.19 AB075 0.16 204.01 62.03 
Percent of local roads NB025 -0.05 0.95 0.09 AB075 0.11 0.89 0.06 
Percent of primary roads NB025 0.06 0.01 0.03 CT -0.12 0.04 0.05 
Sidewalk coverage CT 0.21 0.69 0.31 AB075 0.14 0.73 0.25 
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Note: a Scale abbreviations: AB025 (areal buffer, 0.25-mile), AB050 (areal buffer, 0.50-mile), AB075 (areal 
buffer, 0.75-mile), AB100 (areal buffer, 1.00-mile), NB025 (network buffer, 0.25-mile), NB050 (network 
buffer, 0.50-mile), NB075 (network buffer, 0.75-mile), NB100 (network buffer, 1.00-mile), CBG (Census 
block group), CT (Census tract), G025 (grid cell, 0.25-mile), G100 (grid cell, 1.00-mile); b Point-biserial 
correlation with binary variable of household decision to participate in ≥1 walk trip; c Point-biserial 
correlation with binary variable of individual trip-level decision to walk. 

 

 To examine the additive contribution of the built environment on HBW mode 

choice, the first step was the estimation of a reduced, base model with alternative-

specific travel time and cost attributes as well as a set of statistically significant 

individual-specific attributes (Table 18). This model produced a log-likelihood estimation 

of -806.56 and an adjusted McFadden’s R2 value of 0.32. The next steps in this iterative 

model building exercise was the forward selection of significant built environment 

attributes describing the physical context of the trip origin, followed by a comparable 

process to specify significant attributes at the destination. Estimation results of the full 

HBW model are provided in Table 19. 

 

Table 18: Base Multinomial Logistic Regression Model Results for Home-Based Work Travel 

 Travel Mode Alternative a 

 Public Transit Bicycle Walk 

Variable Name B SE B SE B SE 

Intercept 2.72 0.69*** -0.95 0.97 5.53 1.03*** 
Travel Time -0.05 0.01*** -0.01 0.01 -0.12 0.01*** 
Cost -0.32 0.11**     

Individual Characteristics       

Gender: Female -0.71 0.19*** 0.43 0.26 -0.34 0.28 
Education: Associate’s degree 0.46 0.47 -0.25 0.41 -0.17 0.53 
Education: Bachelor’s degree 1.45 0.43*** -0.28 0.39 1.06 0.49* 
Education: Graduate degree 1.87 0.43*** -0.77 0.43 1.20 0.50* 
Driver’s license -1.84 0.49*** -1.64 0.46*** -2.41 0.52*** 

Household Characteristics       

Oldest adult: 30 to 44 years old -0.81 0.47 0.40 0.79 -1.05 0.90 
Oldest adult: 45 to 64 years old -1.38 0.46** -0.16 0.77 -1.17 0.88 
Oldest adult: 65 years or older -2.62 0.62*** -0.32 0.84 -2.07 1.01* 
Household vehicles per driver -1.72 0.29*** -0.04 0.32 -1.60 0.37*** 
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Model Statistics       
     Log-likelihood -806.56     
     McFadden’s R2 (adjusted) 0.32     

Note: a Base alternative = Personal Vehicle; * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

 

Table 19: Final Multinomial Logistic Regression Model Results for Home-Based Work Travel 

 Travel Mode Alternative a 

 Public Transit Bicycle Walk 

Variable Name B SE B SE B SE 

Intercept -1.66 1.05 -3.60 1.58* 1.09 1.80 
Travel Time -0.04 0.01*** 0.00 0.01 -0.12 0.01*** 
Cost -0.27 0.12*     

Individual Characteristics       

Gender: Female -0.71 0.20*** 0.18 0.29 -0.23 0.30 
Education: Associate’s degree 0.40 0.50 -0.41 0.45 -0.17 0.57 
Education: Bachelor’s degree 1.37 0.46** -0.44 0.43 0.79 0.52 
Education: Graduate degree 1.78 0.46*** -1.06 0.49* 0.96 0.54 
Driver’s license -2.22 0.52*** -2.72 0.54*** -2.61 0.54*** 

Household Characteristics       

Oldest adult: 30 to 44 years old -0.91 0.50 0.64 0.88 -1.11 0.98 
Oldest adult: 45 to 64 years old -1.25 0.49* -0.46 0.84 -0.97 0.95 
Oldest adult: 65 years or older -2.58 0.65*** -0.53 0.93 -1.85 1.09 
Household vehicles per driver -1.65 0.31*** -0.49 0.40 -1.34 0.40*** 

Built Environment (residence)       

Housing density 0.11 0.07 -0.16 0.13 0.14 0.08 
     (Scale: Network Band 0.75-mile)       
Jobs density -0.12 0.03*** -0.03 0.06 -0.03 0.03 
     (Scale: Areal Buffer 1.00-mile)       
Land use balance 2 2.70 0.99** -1.38 1.45 1.26 1.49 
     (Scale: Network Band 0.50-mile)       
Alpha index 3.51 1.44* -5.22 2.08* -0.11 3.97 
     (Scale: Areal Buffer 1.00-mile)       

Built Environment (destination)       

Housing density 1.05 2.67 7.07 3.00* 16.85 5.20** 
     (Scale: Grid 1.00-mile)       
Land use percent: Education 8.00 3.90* 18.76 4.24*** -1.54 8.70 
     (Scale: Areal Buffer 1.00-mile)       
Land use patches: Entertainment 8.22 2.67** 16.35 3.18*** -0.28 10.06 
     (Scale: Areal Buffer 0.75-mile)       
Alpha index 4.73 1.24*** 13.19 1.91*** 7.81 3.93* 
     (Scale: Areal Buffer 1.00-mile)       

Model Statistics       
     Log-likelihood -695.47     
     McFadden’s R2 (adjusted) 0.41     

Note: a Base alternative = Personal Vehicle; * p < 0.05, ** p < 0.01, *** p < 0.001. 
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In terms of pedestrian travel for HBW trips, on average, an individual was less 

likely to walk than drive or ride as a passenger in a vehicle if he/she possessed a driver’s 

license or lived in a household with a higher number of vehicles per licensed driver. As 

expected, travel time had a negative relationship with the decision to walk rather than 

use a vehicle for work-related travel, while the generic specification of parking cost was 

negatively associated with all travel mode alternatives. The decision to bicycle rather 

than ride in a vehicle for HBW travel was negatively linked to possessing a driver’s 

license or having attained a graduate degree. For home-based trips to work or school, 

the decision to choose public transit rather than a vehicle was significantly predicted by 

a greater number of individual and household characteristics. 

 Accounting for select built environment features around the origin and 

destination of a HBW trip significantly improved the final model’s fit (𝜒2 = 222.17, p < 

0.001). An increase in density of housing units and ratio of observed to possible route 

alternatives (alpha index) at the destination had a positive effect on the decision to 

select an active mode rather than ride in a private vehicle. An increase in the percentage 

of educational land uses and landscape patches related to an entertainment land use 

had a positive impact on the decision to bicycle or ride transit when compared to the 

base case of auto travel. On average, an individual was more likely to ride transit rather 

than in a vehicle if the environment around his/her home was characterized by a 

balanced spatial distribution of land uses, increased level of network connectivity, and 

lower level of employment density. 
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 Fewer built environment features had a significant contribution to the HBNW 

choice models; yet, their addition offered a statistically significant expansion (𝜒2 = 

103.37, p < 0.001) to the base model (Table 20) which produced a log-likelihood 

estimation of -1,037.10 and an adjusted McFadden’s R2 value of 0.40. In the final model 

(Table 21), an adult was more likely to walk than ride in a vehicle for nonwork trips if 

his/her residential environment had a higher housing unit density or activity-related 

complementarity of residential, retail, entertainment, education, and other land uses. 

Expectedly, the presence of a large retail landscape patch (e.g., big box store, shopping 

mall) at a trip destination was a significant predictor of the decision to use a private 

vehicle rather walk for HBNW travel. As with the HBW model, an increase in network 

connectivity, signified in the HBNW model by the cyclomatic index, was a significant 

determinant in using transit rather than a vehicle. 

 

Table 20: Base Multinomial Logistic Regression Model Results for Home-Based Nonwork Travel 

 Travel Mode Alternative a 

 Public Transit Bicycle Walk 

Variable Name B SE B SE B SE 

Intercept -3.02 0.73*** -0.18 1.09 2.66 0.45*** 
Travel Time -0.12 0.01*** -0.12 0.01*** -0.12 0.01*** 
Cost -0.93 0.13***     

Individual Characteristics       

Driver’s license -1.51 0.44*** -1.56 1.06 -1.75 0.33*** 
Bike 3.93 0.54*** -0.26 0.75 0.52 0.14*** 

Household Characteristics       

Annual income: $25,000 to $49,999 0.10 0.45 0.08 1.20 -0.30 0.27 
Annual income: $50,000 to $99,999 -0.02 0.42 -0.31 1.17 -0.40 0.25 
Annual income: $100,000 or more 0.10 0.43 -0.24 1.30 -0.51 0.26* 
Household vehicles per driver -0.86 0.28** -0.29 0.79 -0.64 0.19*** 

Model Statistics       
     Log-likelihood -1,037.10     
     McFadden’s R2 (adjusted) 0.40     

Note: a Base alternative = Personal Vehicle; * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table 21: Final Multinomial Logistic Regression Model Results for Home-Based Nonwork Travel 

 
 

Travel Mode Alternative a 

 Public Transit Bicycle Walk 

Variable Name B SE B SE B SE 

Intercept -4.65 1.11*** 5.20 2.76 0.77 0.73 
Travel Time -0.11 0.01*** -0.11 0.01*** -0.11 0.01*** 
Cost -0.90 0.13***     

Individual Characteristics       

Driver’s license -1.34 0.45** -2.44 1.06* -1.67 0.34*** 
Bike 3.87 0.54*** -0.07 0.79 0.42 0.15** 

Household Characteristics       

Annual income: $25,000 to $49,999 0.15 0.47 0.17 1.16 -0.15 0.28 
Annual income: $50,000 to $99,999 0.08 0.43 -0.55 1.18 -0.30 0.26 
Annual income: $100,000 or more 0.17 0.44 -1.06 1.43 -0.36 0.27 
Household vehicles per driver -0.63 0.27* -0.99 0.95 -0.51 0.20* 

Built Environment (residence)       

Housing density -0.07 0.06 -0.57 0.28* 0.14 0.04*** 
     (Scale: Network Band 0.75-mile)       
Activity-related complementarity 2 -1.35 1.07 1.05 2.86 1.63 0.73* 
     (Scale: Network Band 0.25-mile)       
Land use patches: Retail 5.87 1.69*** -7.92 6.43 -0.32 1.23 
     (Scale: Network Band 1.00-mile)       

Built Environment (destination)       

Maximum patch size: Retail 1.76 2.05 -32.97 19.07 -5.88 1.84** 
     (Scale: Areal Buffer 0.25-mile)       
Cyclomatic index 0.01 0.01*** 0.01 0.01 -0.01 0.00 
     (Scale: Network Band 0.50-mile)       

Model Statistics       
     Log-likelihood -985.39     
     McFadden’s R2 (adjusted) 0.43     

Note: a Base alternative = Personal Vehicle; * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

5.5 Conclusions and Discussion 

This study has presented an extensive investigation of the neighborhood effects 

of the built environment on travel mode choice that explores the MAUP-related impacts 

of scale selection and zonal configuration. Examining variation in the scale extent 

chosen to reflect the built environment’s connection to walking, this study found 

evidence of scale effects in land development pattern, urban design, and transportation 
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system measures of the built environment. Land use composition indices were affected 

by the subjective decision of boundary delineation; exhibiting a stronger association 

with walking at a smaller spatial extent. This flattening relationship, which was found at 

each trip end and also exhibited by several configuration measures, suggests that 

consideration should be given to operationalizing land use mix at a disaggregate scale in 

studies of pedestrian travel. By adding complexity in land use composition and 

configuration, the feasibility of walking is improved by bringing residential and non-

residential activities in closer proximity.  

However, inconsistencies with this trend were revealed when operationalizing 

certain density and network connectivity indices at greater levels of aggregation. In 

general, these measures, when observed at the origin, displayed a stronger association 

with walking as the spatial scale increased. This discrepancy highlights a prospect that 

different extents or zoning schemes may be more suitable when measuring the various 

contextual influences of pedestrian travel and that a more aggregate spatial extent may 

be sufficient in assessing this connection for connectivity or density measures. Zoning 

effects, which are likely more meaningful when using fixed scale zonal systems, were 

also suggested to influence sliding scale neighborhood representations and must be 

considered when operationalizing the built environment determinants of active and 

passive modes of travel. Provided these and other trends of this MAUP-related analysis, 

the following suggestions regarding geographic boundary selection may prove useful for 

future research into the built environment determinants of walking:  
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• Sliding geographic scales should be adopted for built environment measurement 

whenever possible, 

• Measurement near origin should be prioritized but will not provide a complete 

picture of the trip’s physical context, and 

• Consider operationalizing land use mix measures at a more disaggregate spatial 

extent than other built environment indicators. 

 

 A second study component was the examination of neighborhood effects of the 

built environment at each trip end on mode choice at the home location for work and 

nonwork travel. Having identified the combination of indicator and geography 

producing the strongest association with walking, model results found the physical 

context near each trip end significantly explained mode choice for both trip purposes. 

Built environment features at an individual’s work or school location appeared to 

explain more variation in home-based travel mode choice than his/her residential 

environment, while the context surrounding the home location had a seemingly 

stronger role on modal decisions for nonwork travel. Expectedly, the role of the built 

environment was less impactful on nonwork travel, which includes discretionary trips 

for recreational or social activities that are typically not routine. However, as supported 

in the transportation and public health literature (e.g., Brownson, et al., 2009; Ewing & 

Cervero, 2010), land development pattern, urban design, and transportation system 

characteristics mattered in the decision to perform work or nonwork travel via a more 
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sustainable transportation mode. In general, individuals who chose walking rather 

driving or riding in a private vehicle to conduct work-related travel were influenced by 

residential density and network connectivity at the trip end; whereas, land development 

patterns around each trip end had the greatest effect on the decision to walk for 

nonwork trips. 

 Findings from this study’s MAUP-related and mode choice analyses have 

important implications for transportation-land use planning research. First, greater 

deliberation should be given to the decision of geographic boundary selection when 

operationalizing built environment features. As demonstrated, an increase in geographic 

scale extent can produce an amplified or waning importance for certain contextual 

determinants of active travel. Relatedly, the neighborhood effect of the built 

environment should not be simply standardized using one spatial extent or zoning 

system when investigating the impact of different built environment dimensions on 

travel. By using disaggregate data and testing the sensitivity of applying different levels 

of aggregation, researchers can better identify the spatial boundaries at which 

contextual factors exert their actual or strongest influence on the individual behaviors 

being studied (Kwan, 2012). In this study, the specification of built environment 

indicators operationalized based on the strength of their association to walking 

emphasized the significance of isolating the physical context at each trip end on an 

individual’s choice of travel mode. Since most transportation decisions are context-

dependent, studies of the transportation-land use connection must clearly distinguish 
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the role of the built environment at each trip end on travel decisions for work and 

nonwork activities. By doing so, researchers can help to better guide land use policies 

and programs aimed at facilitating walking for transportation and physical activity. 

 Future efforts should extend this study’s contributions, both conceptually and 

methodologically. First, the contextual features in the mode choice models were 

operationalized based on associations with walking; however, the appropriate spatial 

extent for studying this transportation-land use connection is likely to vary with travel 

speed. Pedestrians, who travel at slower speeds, have a greater ability to process the 

complexity of their immediate setting, so a suitable scale to measure the neighborhood 

effect of the built environment on walking is expected to be smaller than users of faster 

modes (Frank & Engelke, 2001). Second, a complete depiction of a traveler’s context 

should consider the dual characterization of the built environment at local and regional 

levels (Handy, 1992). One study extension would be to model the built environment 

connection to mode choice by concurrently testing the auto-centric and pedestrian-

oriented spatial extents of the same indicator. Third, the phenomenon of residential 

self-selection warrants further attention in the mode choice analysis since decisions 

involving residential neighborhood and, to a lesser extent, workplace location may have 

a confounding role in the mode used to perform HBW travel. Finally, given that travel 

time was a significant deterrent to walking for both work and nonwork trips, an exciting 

contribution to the evidence base would be an inspection of the scaling and zoning 

effects of the built environment’s connection to destination choice for pedestrian travel 
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(e.g., Clifton, et al., 2016). Yet, despite these limitations and prospects for future study, 

this work in its present state provides a systematic assessment of the impact of 

geographic scale choice on understanding the complex interactions between the built 

environment and travel behavior. 
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Chapter 6: Conclusions 

 

This dissertation introduced an improved conceptualization and measurement of 

land use mix and then systematically explored its connection to pedestrian travel in a 

comprehensive, behavioral framework. In doing so, this collection of studies addressed 

the three research questions stated in the introduction. This concluding chapter begins 

by summarizing the overarching contributions of this collective work and the findings 

from each of the three studies as they relate to the research question they addressed. A 

depiction of the potential implications of this work for transportation planning practice 

follows. The chapter then details the main limitations of the adopted research design 

and concludes by describing a set of exciting directions for future research into the topic 

of land use mix and pedestrian travel behavior. 

 

 
6.1 Contributions and Findings 

 The increased availability of disaggregate land use data has resulted in the wide 

adoption of an array of built environment indicators in recent studies of pedestrian 

travel behavior. While potentially informative and helpful in building an evidence base, 

the selection of ad hoc environmental measures without a strong theoretical connection 

to anticipated behavioral responses can also create negative connotations for properly 

understanding the interactions between the built environment and pedestrian travel 

behaviors. By deconstructing land use mix and reimagining this multifaceted construct 
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as a collection of complementary landscape pattern metrics, this dissertation provides 

important theoretical and empirical contributions for transportation-land use planning 

research and practice. 

 Despite a demonstrated interest in linking land use mix to pedestrian travel, a 

conceptually valid land use mix measure that yields more consistent and generalizable 

results is missing from planning research (Song, et al., 2013). Land use entropy, which is 

a commonly adopted pattern measure of land use mix, originated in information 

sciences and has no theoretical basis as an indicator of pedestrian travel behavior. 

Consequently, the assumption of compositional evenness and inattention to land use 

complementarity or spatial configuration, which are intrinsic to any land use entropy 

measure, hinder its ability to adequately inform transportation-land use policy. In 

response, this dissertation combined activity-based travel behavior and landscape 

ecology theory to introduce a land use mix measure that explicitly accounts for how the 

spatial configuration of local land uses may also facilitate increased pedestrian travel. 

 Beyond offering a conceptual advancement, the application of this multifaceted 

land use mix construct in this dissertation represented an achievement toward meeting 

a transportation-land use planning goal to find mix indicators that more accurately and 

efficiently measure its influence on particular travel outcomes (Manaugh & Krieder, 

2013). The activity-related complementarity measure provides an indication of what 

land use composition mirrors derived travel demand, which planners may then use to 

infer the land use type most needed in a neighborhood to improve its walkability. This 
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insight cannot be obtained from present mix indicators and may prove valuable in the 

development of area plans or performance-based zoning standards seeking to increase 

the feasibility of pedestrian travel in a neighborhood. In all, by placing greater attention 

to the composition and configuration of land use types as well as the boundary chosen 

to delineate the impact of these complementary pattern aspects, planning researchers 

can begin to better apprise planning practitioners of the pedestrian travel impacts of 

certain land use compositions and configurations within a neighborhood. 

The study described in Chapter 3 investigated the relationship between 

pedestrian travel and land use mix when considering the complementarity, composition, 

and configuration of local land use types. A persistent limitation in past studies of this 

transportation-land use connection has been an absence in the explicit consideration of 

the spatial arrangement of land use types in the measurement of land use mix. In 

response, this study introduced a land use mix construct reflected by indicators of land 

use composition as well as the corresponding pattern aspect of spatial configuration. A 

second contribution of this study was the development of an activity-related 

complementarity measure that explains an ideal composition of land uses based on 

derived travel demand rather than spatial equilibrium. This activity-related indicator can 

redirect the quantification of land use diversity away from the athoeretical equal 

balance assumption, which is intrinsic to the commonly used entropy index, and toward 

activity complementarity. Application of a confirmatory factor analysis framework 

provided a hypothesis-driven process for identifying a land use mix construct reflective 
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of two composition, including this activity-related complementarity measure, and two 

configuration indicators. The land use mix construct was a stronger predictor of walk 

mode choice than land use entropy and a significant determinant of home-based walk 

trip frequency when accounting for other common built environment covariates. 

A second empirical study, described in Chapter 4, examined the impact of land 

use mix and other smart growth features on pedestrian travel for transportation-related 

and discretionary trip purposes. While past research has examined these relationships, 

these studies largely depict the built environment as a series of isolated measures 

rather than as a bundle of synergistic indicators and inadequately account for the 

indirect effects of the various explanatory factors influencing one another and 

pedestrian travel. A primary study contribution was the identification of a second-order 

factor that described a smart growth neighborhood comprising the three interrelated 

tenets of land use mix, employment concentration, and pedestrian-oriented design. A 

structural equation modeling strategy was then used to examine the impact of this 

multidimensional conceptualization of the built environment on pedestrian travel as 

portrayed in a proposed multidirectional conceptual model. The study was novel in its 

adoption of this advanced analytic strategy to link multiple latent constructs reflected 

by objective indicators to pedestrian travel behaviors. Findings revealed that residing 

within a smart growth neighborhood was a strong, positive predictor of the household-

level decision to participate in at least one walk trip for transportation or discretionary 

purposes. Accordingly, this study provided planners an identified set of indicators that 
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may be toggled to improve built environment efficiencies and encourage physically 

active modes of travel within local neighborhoods. 

Chapter 5 delivered a final empirical study that explored the influence of 

operationalizing land use mix and other built environment features at varying 

geographic scales on their hypothesized connections to individual travel behavior. The 

likelihood of scale-related decisions to distort the significance or degree of these 

relationships has likely confounded findings from past studies examining how the 

physical context near each trip end effects an individual’s travel behavior for different 

trip purposes. This study contributed to a limited evidence base investigating the scale 

and zoning effects of understanding the impact of land development pattern, urban 

design, and transportation system features on pedestrian travel at different geographic 

boundaries. A result of this descriptive sensitivity analysis was a recognition of the 

pairing of scale and built environment indicator that produced the strongest association 

with pedestrian travel at each trip end. While not definitive, this effort provided insight 

into the boundary at which certain physical context features exert their genuine 

influence on walking behaviors. By using discrete choice analysis, a second study 

contribution involved the modeling of home-based travel for work and nonwork 

activities as a function of personal, household, and trip characteristics as well as this 

context at each trip end. Few studies in the literature have assessed mode choice for 

different trip purposes with such an extensive set of objective measures to understand 

the role of land use at the trip origin and destination. Findings from this effort found 
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that development patterns, designated by land use mix and density measures, at each 

trip end had a strong effect on the decision to walk rather than use a private vehicle for 

nonwork trips. 

 

6.2 Practical Implications 

Beyond these scholarly contributions, this dissertation also has several practical 

implications for transportation planners interested in pedestrian travel. First, extending 

the theoretical conceptualization of land use mix can help to inform smart growth and 

infill development plans as to the proper balance of activity locations needed to achieve 

neighborhood-level walkability. Present indicators of land use mix are insufficient 

performance measures due to imperfect theoretical foundations, inconsistent findings, 

and a general mismatch between measurement and intended outcome. The activity-

related complementarity measure offers planners an alternative composition measure 

to the entropy index that defines local land use mix based on the distribution of activity 

locations that generate observed travel demand. Therefore, a neighborhood 

characterized by an activity-related distribution of land uses could enable individuals to 

walk to the types of destinations that derive their need for travel. While more research 

is needed, findings from each study revealed a consistently positive relationship 

between this new mix metric and walking. If this trend holds true in other contexts, then 

transportation planners will have greater insight into the ideal balance of land uses 

needed to facilitate higher levels of physical activity. 
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 Second, the positive association revealed between walking and neighborhoods 

with land use mix, employment concentration, and pedestrian-oriented design can 

redirect urban development discussions away from contentious debates focused on 

residential densification. The first study found that local land use mixing defined by 

complexity in both composition and configuration, and not population density, was a 

strong predictor of home-based walk trip frequency. In the next empirical study, the 

multidimensional construct of a smart growth neighborhood, which was not informed 

by population density, had a strong direct and total effect on home-based walking for 

both transportation-related and discretionary purposes. This latter study showed that 

local land use mixing may be combined with other smart growth principles to create a 

walkable environment where increased levels of walking are observed. Aside from a 

focus on upzoning residential land uses to allow for greater density, planners should 

seek alternative options (e.g., rezoning) that permit the integration of local retail stores 

within predominately residential neighborhoods. 

 Lastly, transportation planners and engineers must be cognizant that geographic 

scale selection influences the study of spatial-dependent behaviors. While this notion is 

implicit in transportation-land use study and practice, few previous efforts have 

systematically investigated the sensitivity of contextual measures and their association 

with walking through spatial scale variation. Planners should give greater consideration 

to the spatial boundaries at which contextual factors exert their actual influence and 

subsequently how they operationalize built environment measures to understand their 
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connection to travel behavior. Misconceptions of the built environment can result in 

measurement error and an inaccurate reflection of how pedestrian travel behaviors are 

affected by changes to the current land development patterns, urban design features, 

and transportation systems found within neighborhoods. 

 

6.3 Limitations 

This section briefly summarizes two major limitations of this dissertation 

research. The examination of interactions between the built environment and travel 

behavior with longitudinal data and an unravelling of the influence of residential self-

selection on these connections are areas of research left unfulfilled by this dissertation. 

Travel behavior data analyzed in this research were cross-sectional, which inhibited the 

ability to confidently claim that built environment modifications seeking to improve 

neighborhood-level land use mixing caused increases in pedestrian travel. This research 

found that land use mix had a strong, positive association with walking, but no 

directionality regarding that association can be established. While use of structural 

equation modeling enabled the testing of bidirectional relationships outlined in the 

conceptual model, any analysis of cross-sectional data does not provide the condition of 

time precedence needed to establish this missing causal link. 

 Relatedly, this research did not explicitly account for any potential statistical bias 

to model results produced by residential self-selection. Household decisions of where to 

reside may be manifestations of the travel preferences of its members. Accordingly, an 
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individual who is predisposed to more active modes of travel may choose to reside in 

smart growth neighborhoods; therefore, increases in the land use mixing may be less of 

a determining factor of walking than residential sorting. Although this idea of residential 

self-selection can be accounted for within cross-sectional data (i.e., use of psychosocial 

measures), the importance of this phenomenon in transportation-land use studies is 

likely best captured via longitudinal analyses. 

 

6.4 Future Directions 

This dissertation concludes with a look to the future by identifying areas where 

this work can be extended. In Chapter 2, three land use mix components were 

identified: land use interaction, geographic scale, and temporal availability. While 

empirical advancements to the first two components were made in this dissertation, the 

opportunity to access land use types at a specific time was not quantified. Future efforts 

should explore to what extent, if any, the inclusion of temporal availability in land use 

mix indicators better explains travel behavior variation than conventional mix measures. 

Introducing the temporal availability component, which is missing from the present land 

use mix measures that have portrayed a timeless illustration of the diversity in activity 

opportunity supply, would progress this dissertation work. In theory, the adoption of a 

time-based land use mix measure can help support innovative transportation-land use 

policies, identify social inequities in distance-based accessibility, and improve behavioral 

models of travel demand. 
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 To ease the transferability of this research to practice, the land use mix construct 

introduced in Chapter 3 could be reimagined as an index based on the four identified 

indictors. Alternatively, a new land use mix indicator that is expressed as a mathematical 

formulation combining the proposed activity-related complementarity measure with the 

contagion index could be explored. A theoretically grounded measure that encompasses 

both composition and configuration aspects will better guide existing transportation-

land use policies by identifying thresholds of land use mix that are needed to achieve 

higher levels of active travel and physical activity. 

 Another dissertation extension would be to add complexity to the analytic 

framework presented in Chapter 4 by incorporating individual-level psychosocial 

measures and pedestrian travel outcomes to improve the depiction of mechanisms 

outlined in the conceptual model. While perceptions of the built environment are 

subject to reporting bias and more difficult to translate into practice, these psychosocial 

measures offer valuable insight and their absence in this work likely confounds the 

reported findings. In addition, the application of a hierarchical modeling framework 

would enable individual-level walking behaviors to be analyzed. As it stands, this study 

linked walkability at the home location to the household-level decision to participate in 

at least one walk trip, a theoretically imperfect strategy for operationalizing walking. By 

including individual-level psychosocial measures and walking behaviors, future efforts 

can provide a more robust understanding of the relative impact of land use mix and 
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other smart growth factors, which are established transportation planning tools, for 

increasing pedestrian activity. 

 Finally, the operationalization of land use mix as well as density, urban design, 

and transportation system measures with perceptive geographic scales should be 

sought after. In the final study, the use of network bands to capture the neighborhood 

effects of the built environment objectively limited the area considered by an individual 

to affect travel based on access to the street network. However, a subjective quality of 

the built environment related to an individual’s perception of what may be physically 

reached is a more theoretically justifiable way to delineate a neighborhood and define 

what features impact travel. A recognition of these cognitive confinements of individual 

movement to nearby activity locations will further refine the ability to understand how 

local land use mixing affects pedestrian travel behavior.  
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